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> Let (G,+) be a group, not necessarily abelian.

> My(G) ={f:G — G| f(0) =0} is a nearring under pointwise
addition and function composition.

» While My(G) is a simple near-ring, it does contain rings of
functions.

» For example, if G is abelian, End(G), under the same operations, is
a ring contained in My(G).
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> C determines a ring R(C), of zero preserving functions on G,
defined by R(C) :={f € Mp(G) | fla, € End(Ay) for all o € A}.
We call R(C) the ring determined by the cover C. Note that the
zero function, 0, and the identity function, id, are in R(C).

» On the other hand, let S be a ring in My(G). Then C(S) :={B C
G | B is an abelian subgroup of G and S|g C End(B)} is an abelian
cover of G, called the cover of G determined by the ring S.
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denote the collection of rings in My(G). Then the maps
R:T—> A, C—R(C)andC: A\ —T, S— C(S), determine a
Galois connection between I' and A.

» For any abelian cover C, CR(C) D C. Moreover,
RCR(C) = R(C). We call CR(C) the closure of C and denote this
by C. The cover C is closed if C = C.

» Also, for any ring T in My(G), T CRC(T), sowhen T is a
maximal ring, T = RC(T). Hence T is determined by some abelian
cover of G.

» When My(G) contains a unique maximal ring, we say G € U MTR.



Some Basic Results

> Theorem 1.2 (Kreuzer, Maxson, 2006) Let A be an abelian
group. If A is a torsion group or finitely generated, then End(A) is a
maximal ring in My(A).



Some Basic Results

> Theorem 1.2 (Kreuzer, Maxson, 2006) Let A be an abelian
group. If A is a torsion group or finitely generated, then End(A) is a
maximal ring in My(A).

» Theorem 1.3 If G is a finite group then R(M_) is a maximal ring
in Mo(G), where M. denotes the cover by maximal cyclic subgroups.



Some Basic Results

> Theorem 1.2 (Kreuzer, Maxson, 2006) Let A be an abelian
group. If A is a torsion group or finitely generated, then End(A) is a
maximal ring in My(A).

» Theorem 1.3 If G is a finite group then R(M_) is a maximal ring
in Mo(G), where M. denotes the cover by maximal cyclic subgroups.

> Corollary 1.4 Let G be a finite group. If there exists an abelian
cover D of G such that R(D) ¢ R(M.) then G ¢ UMR.



Some Basic Results

> Theorem 1.2 (Kreuzer, Maxson, 2006) Let A be an abelian
group. If A is a torsion group or finitely generated, then End(A) is a
maximal ring in My(A).

» Theorem 1.3 If G is a finite group then R(M_) is a maximal ring
in Mo(G), where M. denotes the cover by maximal cyclic subgroups.

> Corollary 1.4 Let G be a finite group. If there exists an abelian
cover D of G such that R(D) ¢ R(M.) then G ¢ UMR.

» Corollary 1.5 If G is a finite group and every maximal cyclic
subgroup is also maximal as an abelian subgroup, then G € UMR.
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» Lemma 2.2 Let A be a torsion abelian group, A= ®,A,. If each
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> Lemma 2.3 If A is a torsion abelian group, A = @pAp, such that
each A, is a bounded group. Then A € UMR if and only if each A,
is cyclic. In this case, End(A) is the unique maximal ring in My(A).

» Theorem 2.4 Let A be a finitely generated abelian group. Then
A cUMR if and only if A is cyclic.
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» If G is finite and nilpotent, then G = S(p1) ® --- ® S(p;), the
decomposition of G into the direct sum of its Sylow subgroups
S(pi), i=1,...,t. Itis known that if R is a maximal ring in
Mo(G), then R=R; ® --- @ R; where R; is a maximal ring in
Mo(S(p;)) foreach i =1,...,t.

» Theorem 3.1 Let G be a finite p-group. Then G € U MR if and
only if p=2 and G is cyclic or a generalized quaternion group, or
p >3 and G is cyclic.

» Corollary 3.2 Let G be a finite nilpotent group. Then G € UMTR
if and only if its 2-Sylow subgroup is cyclic or a generalized
quaternion group, and its p-Sylow subgroups for odd p are cyclic.
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» Theorem 4.1 Let 0 = ti[ki] + tolko] + - -+ + t.[k.] € S, where the
k; are all different and the integers t; > 1 forall i =1,...,r. Then
(o) is not maximal cyclic in S,, if and only if there exist partitions
ti=si1+---+si,, foreachi (where the si,j are positive integers),
with at least one s; ; > 2, and an integer q such that s; jlq and

ged (f‘j, k,') =1 forall i and ;.

> Example: In Spp, (0) = ([2] + [2] 4 [4] + [4]) is not maximal cyclic.
In Si6, (o) = ([3] + [3] + [4] + [6]) is maximal cyclic.
In S,, an n— 4 cycle generates a maximal cyclic subgroup if and
only if n=4 (mod 6).
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> Let P be a partition of M ={1,2,...,n}. For K € P, define 4+,
such that (K, +k) is an abelian group. Consider the sequence
a=(ak)kep, ak € K. Define f,: M — M by f,(b) = ax +« b,
(b€ K). Then H={f,} is an abelian subgroup of S,,.

» Theorem 4.2 (Winkler, 1993) H is a maximal abelian subgroup
of S, if and only if P contains at most one singleton.

» Theorem 4.3 S, € UMTR if and only if n € {3,5,7,9}.
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» Theorem 5.1 Let G be a finite non-abelian group, a finitely
generated abelian group, or a torsion abelian group with bounded

p-components. Then every subring of My(G) is commutative if and
only if G e UMR.

» Corollary 5.2 For a finite group G, every subring of My(G) is
commutative if and only if G € UMR.



