

Unique Maximal Rings of Functions

CJ Maxson and JH Meyer*

July 2023

The nearing $M_0(G)$

- ▶ Let $(G, +)$ be a group, not necessarily abelian.

The nearring $M_0(G)$

- ▶ Let $(G, +)$ be a group, not necessarily abelian.
- ▶ $M_0(G) = \{f : G \rightarrow G \mid f(0) = 0\}$ is a nearring under pointwise addition and function composition.

The nearring $M_0(G)$

- ▶ Let $(G, +)$ be a group, not necessarily abelian.
- ▶ $M_0(G) = \{f : G \rightarrow G \mid f(0) = 0\}$ is a nearring under pointwise addition and function composition.
- ▶ While $M_0(G)$ is a simple near-ring, it does contain rings of functions.

The nearring $M_0(G)$

- ▶ Let $(G, +)$ be a group, not necessarily abelian.
- ▶ $M_0(G) = \{f : G \rightarrow G \mid f(0) = 0\}$ is a nearring under pointwise addition and function composition.
- ▶ While $M_0(G)$ is a simple near-ring, it does contain rings of functions.
- ▶ For example, if G is abelian, $\text{End}(G)$, under the same operations, is a ring contained in $M_0(G)$.

Rings determined by Covers of Groups

- ▶ Let $C := \{A_\alpha \mid \alpha \in \mathcal{A}\}$ be an abelian cover of G , i.e., each cell A_α is an abelian subgroup of G and $\cup_{\alpha \in \mathcal{A}} A_\alpha = G$.

Rings determined by Covers of Groups

- ▶ Let $C := \{A_\alpha \mid \alpha \in \mathcal{A}\}$ be an abelian cover of G , i.e., each cell A_α is an abelian subgroup of G and $\cup_{\alpha \in \mathcal{A}} A_\alpha = G$.
- ▶ C determines a ring $\mathcal{R}(C)$, of zero preserving functions on G , defined by $\mathcal{R}(C) := \{f \in M_0(G) \mid f|_{A_\alpha} \in \text{End}(A_\alpha) \text{ for all } \alpha \in \mathcal{A}\}$. We call $\mathcal{R}(C)$ *the ring determined by the cover C* . Note that the zero function, 0, and the identity function, id, are in $\mathcal{R}(C)$.

Rings determined by Covers of Groups

- ▶ Let $C := \{A_\alpha \mid \alpha \in \mathcal{A}\}$ be an abelian cover of G , i.e., each cell A_α is an abelian subgroup of G and $\cup_{\alpha \in \mathcal{A}} A_\alpha = G$.
- ▶ C determines a ring $\mathcal{R}(C)$, of zero preserving functions on G , defined by $\mathcal{R}(C) := \{f \in M_0(G) \mid f|_{A_\alpha} \in \text{End}(A_\alpha) \text{ for all } \alpha \in \mathcal{A}\}$. We call $\mathcal{R}(C)$ *the ring determined by the cover C* . Note that the zero function, 0 , and the identity function, id , are in $\mathcal{R}(C)$.
- ▶ On the other hand, let S be a ring in $M_0(G)$. Then $\mathcal{C}(S) := \{B \subseteq G \mid B \text{ is an abelian subgroup of } G \text{ and } S|_B \subseteq \text{End}(B)\}$ is an abelian cover of G , called the *cover of G determined by the ring S* .

A Galois Connection

- ▶ **Theorem 1.1 (Cannon, Maxson, Neuerburg, 2008)** *Let G be a group, let Γ denote the collection of abelian covers of G and let Λ denote the collection of rings in $M_0(G)$. Then the maps $\mathcal{R} : \Gamma \rightarrow \Lambda$, $C \mapsto \mathcal{R}(C)$ and $\mathcal{C} : \Lambda \rightarrow \Gamma$, $S \mapsto \mathcal{C}(S)$, determine a Galois connection between Γ and Λ .*

A Galois Connection

- ▶ **Theorem 1.1 (Cannon, Maxson, Neuerburg, 2008)** *Let G be a group, let Γ denote the collection of abelian covers of G and let Λ denote the collection of rings in $M_0(G)$. Then the maps $\mathcal{R} : \Gamma \rightarrow \Lambda$, $C \mapsto \mathcal{R}(C)$ and $\mathcal{C} : \Lambda \rightarrow \Gamma$, $S \mapsto \mathcal{C}(S)$, determine a Galois connection between Γ and Λ .*
- ▶ For any abelian cover C , $\mathcal{C}\mathcal{R}(C) \supseteq C$. Moreover, $\mathcal{R}\mathcal{C}\mathcal{R}(C) = \mathcal{R}(C)$. We call $\mathcal{C}\mathcal{R}(C)$ the closure of C and denote this by \overline{C} . The cover C is *closed* if $C = \overline{C}$.

A Galois Connection

- ▶ **Theorem 1.1 (Cannon, Maxson, Neuerburg, 2008)** *Let G be a group, let Γ denote the collection of abelian covers of G and let Λ denote the collection of rings in $M_0(G)$. Then the maps $\mathcal{R} : \Gamma \rightarrow \Lambda$, $C \mapsto \mathcal{R}(C)$ and $\mathcal{C} : \Lambda \rightarrow \Gamma$, $S \mapsto \mathcal{C}(S)$, determine a Galois connection between Γ and Λ .*
- ▶ For any abelian cover C , $\mathcal{CR}(C) \supseteq C$. Moreover, $\mathcal{RCR}(C) = \mathcal{R}(C)$. We call $\mathcal{CR}(C)$ the closure of C and denote this by \overline{C} . The cover C is *closed* if $C = \overline{C}$.
- ▶ Also, for any ring T in $M_0(G)$, $T \subseteq \mathcal{RC}(T)$, so when T is a maximal ring, $T = \mathcal{RC}(T)$. Hence T is determined by some abelian cover of G .

A Galois Connection

- ▶ **Theorem 1.1 (Cannon, Maxson, Neuerburg, 2008)** *Let G be a group, let Γ denote the collection of abelian covers of G and let Λ denote the collection of rings in $M_0(G)$. Then the maps $\mathcal{R} : \Gamma \rightarrow \Lambda$, $C \mapsto \mathcal{R}(C)$ and $\mathcal{C} : \Lambda \rightarrow \Gamma$, $S \mapsto \mathcal{C}(S)$, determine a Galois connection between Γ and Λ .*
- ▶ For any abelian cover C , $\mathcal{CR}(C) \supseteq C$. Moreover, $\mathcal{RCR}(C) = \mathcal{R}(C)$. We call $\mathcal{CR}(C)$ the closure of C and denote this by \overline{C} . The cover C is *closed* if $C = \overline{C}$.
- ▶ Also, for any ring T in $M_0(G)$, $T \subseteq \mathcal{RC}(T)$, so when T is a maximal ring, $T = \mathcal{RC}(T)$. Hence T is determined by some abelian cover of G .
- ▶ When $M_0(G)$ contains a unique maximal ring, we say $G \in \mathcal{UMR}$.

Some Basic Results

- ▶ **Theorem 1.2 (Kreuzer, Maxson, 2006)** *Let A be an abelian group. If A is a torsion group or finitely generated, then $\text{End}(A)$ is a maximal ring in $M_0(A)$.*

Some Basic Results

- ▶ **Theorem 1.2 (Kreuzer, Maxson, 2006)** *Let A be an abelian group. If A is a torsion group or finitely generated, then $\text{End}(A)$ is a maximal ring in $M_0(A)$.*
- ▶ **Theorem 1.3** *If G is a finite group then $\mathcal{R}(M_c)$ is a maximal ring in $M_0(G)$, where M_c denotes the cover by maximal cyclic subgroups.*

Some Basic Results

- ▶ **Theorem 1.2 (Kreuzer, Maxson, 2006)** *Let A be an abelian group. If A is a torsion group or finitely generated, then $\text{End}(A)$ is a maximal ring in $M_0(A)$.*
- ▶ **Theorem 1.3** *If G is a finite group then $\mathcal{R}(M_c)$ is a maximal ring in $M_0(G)$, where M_c denotes the cover by maximal cyclic subgroups.*
- ▶ **Corollary 1.4** *Let G be a finite group. If there exists an abelian cover D of G such that $\mathcal{R}(D) \not\subseteq \mathcal{R}(M_c)$ then $G \notin \text{UMR}$.*

Some Basic Results

- ▶ **Theorem 1.2 (Kreuzer, Maxson, 2006)** *Let A be an abelian group. If A is a torsion group or finitely generated, then $\text{End}(A)$ is a maximal ring in $M_0(A)$.*
- ▶ **Theorem 1.3** *If G is a finite group then $\mathcal{R}(M_c)$ is a maximal ring in $M_0(G)$, where M_c denotes the cover by maximal cyclic subgroups.*
- ▶ **Corollary 1.4** *Let G be a finite group. If there exists an abelian cover D of G such that $\mathcal{R}(D) \not\subseteq \mathcal{R}(M_c)$ then $G \notin \mathcal{UMR}$.*
- ▶ **Corollary 1.5** *If G is a finite group and every maximal cyclic subgroup is also maximal as an abelian subgroup, then $G \in \mathcal{UMR}$.*

Abelian Groups

- ▶ **Lemma 2.1** *If G is a cyclic group, then $G \in \mathcal{UMR}$ and $\text{End}(G)$ is the unique maximal ring in $M_0(G)$.*

Abelian Groups

- ▶ **Lemma 2.1** *If G is a cyclic group, then $G \in \mathcal{UMR}$ and $\text{End}(G)$ is the unique maximal ring in $M_0(G)$.*
- ▶ **Lemma 2.2** *Let A be a torsion abelian group, $A = \bigoplus_p A_p$. If each A_p is cyclic then $A \in \mathcal{UMR}$ and $\text{End}(A)$ is the unique maximal ring in $M_0(A)$.*

Abelian Groups

- ▶ **Lemma 2.1** *If G is a cyclic group, then $G \in \mathcal{UMR}$ and $\text{End}(G)$ is the unique maximal ring in $M_0(G)$.*
- ▶ **Lemma 2.2** *Let A be a torsion abelian group, $A = \bigoplus_p A_p$. If each A_p is cyclic then $A \in \mathcal{UMR}$ and $\text{End}(A)$ is the unique maximal ring in $M_0(A)$.*
- ▶ **Lemma 2.3** *If A is a torsion abelian group, $A = \bigoplus_p A_p$, such that each A_p is a bounded group. Then $A \in \mathcal{UMR}$ if and only if each A_p is cyclic. In this case, $\text{End}(A)$ is the unique maximal ring in $M_0(A)$.*

Abelian Groups

- ▶ **Lemma 2.1** *If G is a cyclic group, then $G \in \mathcal{UMR}$ and $\text{End}(G)$ is the unique maximal ring in $M_0(G)$.*
- ▶ **Lemma 2.2** *Let A be a torsion abelian group, $A = \bigoplus_p A_p$. If each A_p is cyclic then $A \in \mathcal{UMR}$ and $\text{End}(A)$ is the unique maximal ring in $M_0(A)$.*
- ▶ **Lemma 2.3** *If A is a torsion abelian group, $A = \bigoplus_p A_p$, such that each A_p is a bounded group. Then $A \in \mathcal{UMR}$ if and only if each A_p is cyclic. In this case, $\text{End}(A)$ is the unique maximal ring in $M_0(A)$.*
- ▶ **Theorem 2.4** *Let A be a finitely generated abelian group. Then $A \in \mathcal{UMR}$ if and only if A is cyclic.*

Finite Nilpotent Groups

- If G is finite and nilpotent, then $G = S(p_1) \oplus \cdots \oplus S(p_t)$, the decomposition of G into the direct sum of its Sylow subgroups $S(p_i)$, $i = 1, \dots, t$. It is known that if R is a maximal ring in $M_0(G)$, then $R \cong R_1 \oplus \cdots \oplus R_t$ where R_i is a maximal ring in $M_0(S(p_i))$ for each $i = 1, \dots, t$.

Finite Nilpotent Groups

- ▶ If G is finite and nilpotent, then $G = S(p_1) \oplus \cdots \oplus S(p_t)$, the decomposition of G into the direct sum of its Sylow subgroups $S(p_i)$, $i = 1, \dots, t$. It is known that if R is a maximal ring in $M_0(G)$, then $R \cong R_1 \oplus \cdots \oplus R_t$ where R_i is a maximal ring in $M_0(S(p_i))$ for each $i = 1, \dots, t$.
- ▶ **Theorem 3.1** *Let G be a finite p -group. Then $G \in \mathcal{UMR}$ if and only if $p = 2$ and G is cyclic or a generalized quaternion group, or $p \geq 3$ and G is cyclic.*

Finite Nilpotent Groups

- ▶ If G is finite and nilpotent, then $G = S(p_1) \oplus \cdots \oplus S(p_t)$, the decomposition of G into the direct sum of its Sylow subgroups $S(p_i)$, $i = 1, \dots, t$. It is known that if R is a maximal ring in $M_0(G)$, then $R \cong R_1 \oplus \cdots \oplus R_t$ where R_i is a maximal ring in $M_0(S(p_i))$ for each $i = 1, \dots, t$.
- ▶ **Theorem 3.1** *Let G be a finite p -group. Then $G \in \mathcal{UMR}$ if and only if $p = 2$ and G is cyclic or a generalized quaternion group, or $p \geq 3$ and G is cyclic.*
- ▶ **Corollary 3.2** *Let G be a finite nilpotent group. Then $G \in \mathcal{UMR}$ if and only if its 2-Sylow subgroup is cyclic or a generalized quaternion group, and its p -Sylow subgroups for odd p are cyclic.*

The symmetric groups S_n

- ▶ For $n = 3$, S_3 has a unique abelian cover by maximal cyclic subgroups which are also maximal subgroups, hence by Corollary 1.5, $S_3 \in \mathcal{UMR}$.

The symmetric groups S_n

- ▶ For $n = 3$, S_3 has a unique abelian cover by maximal cyclic subgroups which are also maximal subgroups, hence by Corollary 1.5, $S_3 \in \mathcal{UMR}$.
- ▶ **Theorem 4.1** *Let $\sigma = t_1[k_1] + t_2[k_2] + \cdots + t_r[k_r] \in S_n$, where the k_i are all different and the integers $t_i \geq 1$ for all $i = 1, \dots, r$. Then $\langle \sigma \rangle$ is not maximal cyclic in S_n if and only if there exist partitions $t_i = s_{i,1} + \cdots + s_{i,y_i}$ for each i (where the $s_{i,j}$ are positive integers), with at least one $s_{i,j} \geq 2$, and an integer q such that $s_{i,j}|q$ and $\gcd\left(\frac{q}{s_{i,j}}, k_i\right) = 1$ for all i and j .*

The symmetric groups S_n

- ▶ For $n = 3$, S_3 has a unique abelian cover by maximal cyclic subgroups which are also maximal subgroups, hence by Corollary 1.5, $S_3 \in \mathcal{UMR}$.
- ▶ **Theorem 4.1** *Let $\sigma = t_1[k_1] + t_2[k_2] + \cdots + t_r[k_r] \in S_n$, where the k_i are all different and the integers $t_i \geq 1$ for all $i = 1, \dots, r$. Then $\langle \sigma \rangle$ is not maximal cyclic in S_n if and only if there exist partitions $t_i = s_{i,1} + \cdots + s_{i,y_i}$ for each i (where the $s_{i,j}$ are positive integers), with at least one $s_{i,j} \geq 2$, and an integer q such that $s_{i,j}|q$ and $\gcd\left(\frac{q}{s_{i,j}}, k_i\right) = 1$ for all i and j .*
- ▶ Example: In S_{12} , $\langle \sigma \rangle = \langle [2] + [2] + [4] + [4] \rangle$ is not maximal cyclic. In S_{16} , $\langle \sigma \rangle = \langle [3] + [3] + [4] + [6] \rangle$ is maximal cyclic.
In S_n , an $n - 4$ cycle generates a maximal cyclic subgroup if and only if $n \equiv 4 \pmod{6}$.

The symmetric groups S_n

- ▶ Let \mathcal{P} be a partition of $M = \{1, 2, \dots, n\}$. For $K \in \mathcal{P}$, define $+_K$ such that $(K, +_K)$ is an abelian group. Consider the sequence $a = (a_K)_{K \in \mathcal{P}}$, $a_K \in K$. Define $f_a : M \rightarrow M$ by $f_a(b) = a_K +_K b$, $(b \in K)$. Then $H = \{f_a\}$ is an abelian subgroup of S_n .

The symmetric groups S_n

- ▶ Let \mathcal{P} be a partition of $M = \{1, 2, \dots, n\}$. For $K \in \mathcal{P}$, define $+_K$ such that $(K, +_K)$ is an abelian group. Consider the sequence $a = (a_K)_{K \in \mathcal{P}}$, $a_K \in K$. Define $f_a : M \rightarrow M$ by $f_a(b) = a_K +_K b$, $(b \in K)$. Then $H = \{f_a\}$ is an abelian subgroup of S_n .
- ▶ **Theorem 4.2 (Winkler, 1993)** H is a maximal abelian subgroup of S_n if and only if \mathcal{P} contains at most one singleton.

The symmetric groups S_n

- ▶ Let \mathcal{P} be a partition of $M = \{1, 2, \dots, n\}$. For $K \in \mathcal{P}$, define $+_K$ such that $(K, +_K)$ is an abelian group. Consider the sequence $a = (a_K)_{K \in \mathcal{P}}$, $a_K \in K$. Define $f_a : M \rightarrow M$ by $f_a(b) = a_K +_K b$, $(b \in K)$. Then $H = \{f_a\}$ is an abelian subgroup of S_n .
- ▶ **Theorem 4.2 (Winkler, 1993)** H is a maximal abelian subgroup of S_n if and only if \mathcal{P} contains at most one singleton.
- ▶ **Theorem 4.3** $S_n \in \mathcal{UMR}$ if and only if $n \in \{3, 5, 7, 9\}$.

An Application

- ▶ **Theorem 5.1** *Let G be a finite non-abelian group, a finitely generated abelian group, or a torsion abelian group with bounded p -components. Then every subring of $M_0(G)$ is commutative if and only if $G \in \mathcal{UMR}$.*

An Application

- ▶ **Theorem 5.1** *Let G be a finite non-abelian group, a finitely generated abelian group, or a torsion abelian group with bounded p -components. Then every subring of $M_0(G)$ is commutative if and only if $G \in \mathcal{UMR}$.*
- ▶ **Corollary 5.2** *For a finite group G , every subring of $M_0(G)$ is commutative if and only if $G \in \mathcal{UMR}$.*