

Prime factorization of ideals in commutative rings, with a focus on Krull rings

Gyu Whan Chang

Incheon National University

Conference on Rings and Factorizations 2023 in Graz

July 10–14, 2023

Table of Contents

1 Motivation

2 Star operations

3 Krull rings

- Krull rings with zero divisors
- Prime factorization of ideals in Krull rings

4 Chang and Oh's Results

- A new star operation
- Prime u -factorization of ideals
- Mori-Nagata theorem
- Nagata rings
- u -Almost Dedekind rings

5 Juett's general w-ZPI ring

6 Personal opinion

Outline

1 Motivation

2 Star operations

3 Krull rings

- Krull rings with zero divisors
- Prime factorization of ideals in Krull rings

4 Chang and Oh's Results

- A new star operation
- Prime u -factorization of ideals
- Mori-Nagata theorem
- Nagata rings
- u -Almost Dedekind rings

5 Juett's general w-ZPI ring

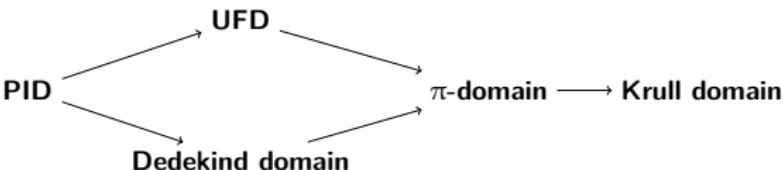
6 Personal opinion

All rings considered in this talk are commutative with identity.

Let R be a ring with total quotient ring $T(R)$.

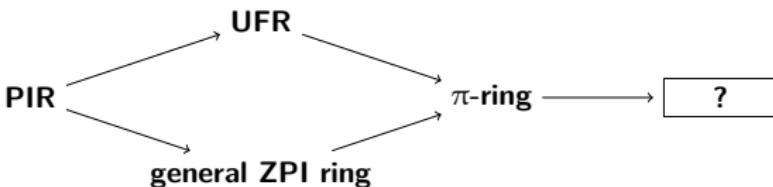
- An element of R is **regular** if it is not a zero divisor.
- $Z(R)$ denotes the set of zero divisors of R .
- $reg(R)$ is the set of regular elements of R , so $T(R) = R_{reg(R)}$.
- An ideal of R is **regular** if it contains a regular element of R .
- An ideal I of R is a **Z-ideal** if $I \subseteq Z(R)$.

Integral domain Case



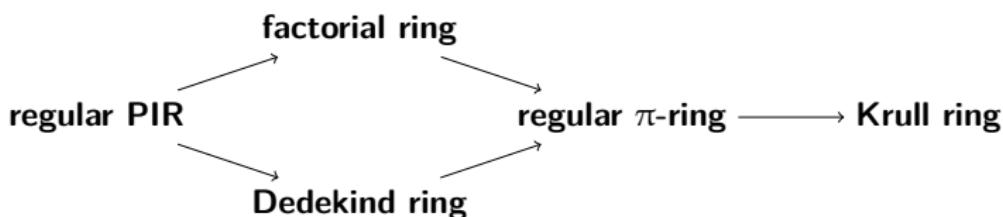
- An integral domain D is a **π -domain** if each nonzero proper principal ideal of D is a finite product of prime ideals.
- D is a **Krull domain** if each nonzero proper principal ideal of D is a finite v -product (t -product) of prime ideals.

Ring with zero divisor case

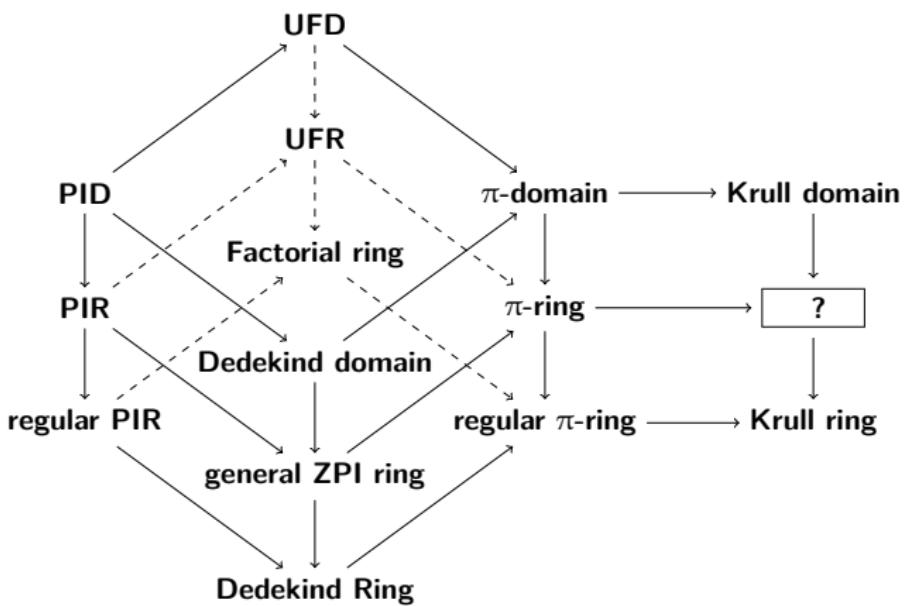


- R is a **principal ideal ring (PIR)** if each ideal of R is principal.
- R is a **(Fletcher's) unique factorization ring (UFR)** if each element of R can be written as a finite product of prime elements.
- R is a **general ZPI ring** if each ideal of R can be written as a finite product of prime ideals.
- R is a **π -ring** if each principal ideal of R can be written as a finite product of prime ideals.
- **(Question)** What is a natural generalization of Krull domains to rings with zero divisors ?

Ring characterized by regular elements or ideals case



- R is a **regular PIR** if each regular ideal of R is principal.
- R is a **factorial ring** if each regular element of R can be written as a finite product of prime elements.
- R is a **Dedekind ring** if each regular ideal of R can be written as a finite product of prime ideals.
- R is a **regular π -ring** if each regular principal ideal of R can be written as a finite product of prime ideals.
- R is a **Krull ring** if each regular principal ideal of R can be written as a finite v -product of prime ideals.



Krull domains

Let D be an integral domain with quotient field K and $X^1(D)$ be the set of nonzero minimal (i.e., height-one) prime ideals of D .

Then D is a **Krull domain** if

- ① $D = \bigcap_{P \in X^1(D)} D_P$,
- ② D_P is a DVR for all $P \in X^1(D)$, and
- ③ each nonzero nonunit of D is contained in only a finitely many prime ideals in $X^1(D)$.

In 1955, Nagata proved that D is a Krull domain if and only if there exists a family Δ of DVRs with quotient field K such that (i) D is the intersection of all rings in Δ and (ii) every nonzero element of D is a unit in all but a finite number of rings in Δ .

The theory of Krull domains was originated by Krull [W. Krull, *Über die Zerlegung der Hauptideale in allgemeinen Ringen*, Math. Ann. **105** (1931), 1-14].

SPR, PIR and general ZPI ring

- A ring R is said to be a **special primary ring (SPR)** or a **special principal ideal ring (SPIR)** if R is a local ring with maximal ideal M such that M is principal and $M^n = (0)$ for some integer $n \geq 1$.

Theorem (1960, Zariski and Samuel)

R is a PIR if and only if R is a finite direct sum of PIDs and SPRs.

- In 1940, S. Mori first studied the general ZPI-ring, where the letters ZPI stands for **Zerlegung Primideale**.

Theorem (1951, Asano)

R is a general ZPI-ring if and only if R is a finite direct sum of Dedekind domains and SPRs.

UFR and π -ring

- In 1967, Fletcher introduced the notion of a **unique factorization ring (UFR)** which is just a UFD in case of integral domains and he showed

Theorem (1970-1971, C.R. Fletcher)

R is a UFR if and only if R is a finite direct sum of UFDs and SPRs.

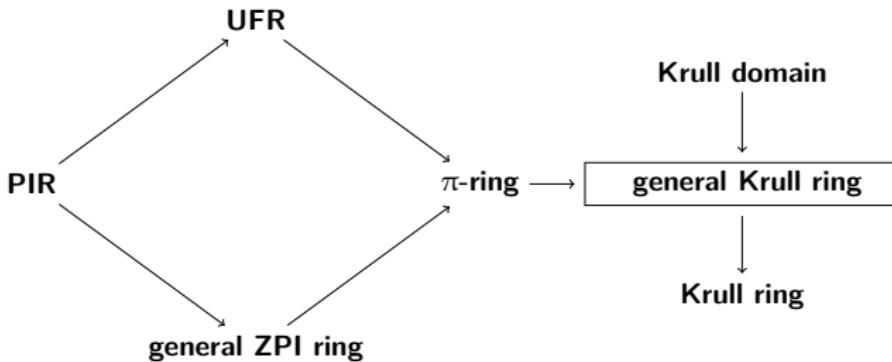
- In 1939, S. Mori gave a complete description of a π -domain.

Theorem (1940, S. Mori)

R is a π -ring if and only if R is a finite direct sum of π -domains and SPRs.

Introduction of a general Krull ring

- Inspired by these four types of rings and by the name of general ZPI-rings, we will say that R is *a general Krull ring* if R is a finite direct sum of Krull domains and SPRs, so we have the following implications.



Counterexample

- R is a Krull ring if and only if every regular principal ideal of R can be written as a finite v -product (or t -product) of prime ideals.

However, the next example shows that this is not true of general Krull rings.

Example

Let $R = \mathbb{Z} \times \mathbb{Q}$ be the direct sum of \mathbb{Z} and \mathbb{Q} .

- ➊ \mathbb{Z} and \mathbb{Q} are Krull domains, so R is a general Krull ring.
- ➋ If $I = (1, 0)R$, then $I_t = I_v = R$. Hence, I cannot be written as a finite t - nor v -product of prime ideals.

Question and purpose

- It is easy to see that D is a Krull domain if and only if there is a star operation $*$ on D such that each nonzero proper principal ideal of D can be written as a finite $*$ -product of prime ideals.

Question

Is there a star operation $$ on a ring so that a general Krull ring can be characterized as a ring in which each principal ideal can be written as a finite $*$ -product of prime ideals?*

The purpose of this talk is to answer to Question affirmatively.

Outline

1 Motivation

2 Star operations

3 Krull rings

- Krull rings with zero divisors
- Prime factorization of ideals in Krull rings

4 Chang and Oh's Results

- A new star operation
- Prime u -factorization of ideals
- Mori-Nagata theorem
- Nagata rings
- u -Almost Dedekind rings

5 Juett's general w-ZPI ring

6 Personal opinion

Fractional ideals

An R -submodule of $T(R)$ is called a *Kaplansky fractional ideal*. A Kaplansky fractional ideal of R is *regular* if it contains a regular element of R .

- $K(R)$ is the set of Kaplansky fractional ideals of R .
- $F(R)$ is the set of *fractional ideals* of R (i.e., $I \in F(R)$ if and only if $I \in K(R)$ and $dI \subseteq R$ for some $d \in \text{reg}(R)$), so $F(R) \subseteq K(R)$.
- An *(integral) ideal* of R is a fractional ideal of R that is contained in R .

Definition of star operations

- A mapping $*$: $K(R) \rightarrow K(R)$, given by $I \mapsto I_*$, is a *star operation* on R if the following four conditions are satisfied for all $I, J \in K(R)$ and $a \in T(R)$:

- ① $R_* = R$,
- ② $al_* \subseteq (al)_*$, and equality holds when a is regular.
- ③ $I \subseteq I_*$, and $I \subseteq J$ implies that $I_* \subseteq J_*$.
- ④ $(I_*)_* = I_*$.

- For all $I \in K(R)$, let

$$I_{*f} = \bigcup \{J_* \mid J \in K(R) \text{ is finitely generated and } J \subseteq I\}.$$

Then $*_f$ is also a star operation on R .

- The star operation $*$ is said to be *of finite type* if $* = *_f$, and $*$ is said to be *reduced* if $(0)_* = (0)$. Clearly, $*_f$ is of finite type, and $*$ is reduced if and only if $*_f$ is reduced.

*-ideals

- An $I \in K(R)$ is a **-ideal* if $I_* = I$. A **-ideal* I is *of finite type* if $I = J_*$ for some finitely generated subideal J of I . A **-ideal* is a *maximal *-ideal* if it is maximal among proper integral **-ideals*.
- If $*$ is a star operation of finite type, then
 - ① a prime ideal minimal over an integral **-ideal* is a **-ideal*,
 - ② a proper integral **-ideal* is contained in a maximal **-ideal*, and
 - ③ a maximal **-ideal* is a prime ideal.
- Let $*_1$ and $*_2$ be star operations on R . We say that $*_1 \leq *_2$ if $I_{*_1} \subseteq I_{*_2}$ for all $I \in K(R)$, equivalently, $(I_{*_1})_{*_2} = (I_{*_2})_{*_1} = I_{*_2}$.

The d -, v - and t -operation

- The identity function $d : K(R) \rightarrow K(R)$ is a star operation.
- For $I \in K(R)$, let

$$I^{-1} = (R :_{T(R)} I) = \{x \in T(R) \mid xI \subseteq R\},$$

then $I^{-1} \in K(R)$. The v - and t -operation are defined by

$$I_v = (I^{-1})^{-1} \text{ for all } I \in K(R), \quad \text{and} \quad t = v_f.$$

- It is known that $d \leq *_f \leq *$, $*_f \leq t \leq v$, and $* \leq v$ for any star operation $*$ on R .

*-invertibility

- An $I \in K(R)$ is said to be *invertible* if $II^{-1} = R$.
- As the $*$ -operation analog, $I \in K(R)$ is said to be *$*$ -invertible* if $(II^{-1})_* = R$.

Proposition

If $$ is a star operation of finite type, then*

- ① *every $*$ -invertible Kaplansky fractional $*$ -ideal is of finite type and a t -invertible t -ideal,*
- ② *every $*$ -invertible prime $*$ -ideal is a maximal t -ideal.*

- It is well known that an invertible ideal is regular, while a $*$ -invertible ideal need not be regular.

Outline

1 Motivation

2 Star operations

3 Krull rings

- Krull rings with zero divisors
- Prime factorization of ideals in Krull rings

4 Chang and Oh's Results

- A new star operation
- Prime u -factorization of ideals
- Mori-Nagata theorem
- Nagata rings
- u -Almost Dedekind rings

5 Juett's general w-ZPI ring

6 Personal opinion

Valuation rings

A valuation on a ring R is a mapping v from R onto a totally ordered abelian group G with ∞ adjoined such that

- (i) $v(ab) = v(a) + v(b)$,
- (ii) $v(x + y) \geq \min\{v(a), v(b)\}$ for all $a, b \in R$, and
- (iii) $v(1) = 0$ and $v(0) = \infty$.

- If $R_v = \{x \in R \mid v(x) \geq 0\}$ and $P_v = \{x \in R \mid v(x) > 0\}$, then R_v is a subring of R , P_v is a prime ideal of R_v , and (R_v, P_v) is called a valuation pair of R .
- The valuation v on R was first studied by Manis when R is a ring with zero divisors [*Valuations on a commutative ring*, Proc. Amer. Math. Soc. 20 (1969), 193-198].
- If $G = \mathbb{Z}$ is the additive group of integers, then the valuation on R is called a *rank-one discrete valuation* on R .

Rank-one discrete valuation rings

Let v be a rank-one discrete valuation on $T(R)$ such that

$$R = \{x \in T(R) \mid v(x) \geq 0\} \quad \text{and} \quad P = \{x \in T(R) \mid v(x) > 0\}.$$

- ① R is called a *rank-one discrete valuation ring* (rank-one DVR).
- ② If P is regular (i.e., P contains a regular element), then $\text{reg-ht} P = 1$ (i.e., P is a minimal regular prime ideal).
- ③ If $T(R)$ is a field, then P is the maximal ideal of R , but this is not true in general.

Definition of Krull rings

We say that R is a *Krull ring* if there exists a family $\{(V_\alpha, P_\alpha) \mid \alpha \in \Lambda\}$ of rank-one discrete valuation pairs of $T(R)$ with associated valuations $\{v_\alpha \mid \alpha \in \Lambda\}$ such that

- (i) $R = \bigcap\{V_\alpha \mid \alpha \in \Lambda\}$,
- (ii) for each regular $a \in T(R)$, $v_\alpha(a) = 0$ for almost all $\alpha \in \Lambda$ and P_α is a regular ideal for all $\alpha \in \Lambda$.

- Krull ring was introduced by J. Marot (1968), J. Huckaba [Integral closure of a Noetherian ring, Trans. Amer. Math. Soc. 220 (1976), 159-666], and Kennedy [Krull Rings, Pacific J. Math. 89 (1980), 131-136].

Marot rings

R is a **Marot ring** if each regular ideal of R is generated by a set of regular elements in R , which was introduced by J. Marot (1969).

Example

A ring R is a Marot ring if R is one of the followings.

- 1 R is an integral domain.
- 2 R is a Noetherian ring.
- 3 $\dim T(R) = 0$.
- 4 R is an overring of a Marot ring.
- 5 R is a general Krull ring.

D. Portelli and W. Spangher also studied Krull rings with additional assumption that the rings are Marot [*Krull rings with zero divisors*, Comm. Algebra **11** (1983), 1817-1851].

Characterizations of Krull rings

- $X_r^1(R)$ is the set of minimal regular prime ideals of R .
- $R_{[P]} = \{z \in T(R) \mid zx \in R \text{ for some } x \in R \setminus P\}$.

Theorem

R is a Krull ring if and only if R satisfies the followings;

- ① $R = \bigcap_{P \in X_r^1(R)} R_{[P]}$,
- ② $(R_{[P]}, [P]R_{[P]})$ is a rank-one DVR for all $P \in X_r^1(R)$, and
- ③ each regular element of R is contained in only finitely many prime ideals in $X_r^1(R)$.

This was proved by D. Portelli and W. Spangher in Marot Krull ring case (1983) and by Alajbegović and Osmanagić, in general case [*Essential valuations of Krull rings with zero divisors*, Comm. Algebra **18** (1990), 2007-2020].

Prime factorization of ideals I

- ① In 1935, Krull stated (without proof) that D is a Krull domain if and only if each v -ideal I of D is a unique finite v -product of height-one prime ideals of D , i.e., $I = (P_1^{e_1} \cdots P_n^{e_n})_v$ for some distinct height-one prime ideals P_1, \dots, P_n and positive integers e_1, \dots, e_n such that the expression $I = (P_1^{e_1} \cdots P_n^{e_n})_v$ is unique [*Idealtheorie, Ergebnisse der Math. und ihrer Grenz.* vol.4, No.3, Berlin, Julius Springer, 1935].
- ② In 1963, Nishimura showed that D is a Krull domain if and only if each v -ideal of D is a unique finite v -product of height-one prime ideals of D , if and only if D is a completely integrally closed Mori domain [*Unique factorization of ideals in the sense of quasi-equality*, J. Math. Kyoto Univ. **3** (1963), 115-125].

Prime factorization of ideals II

- ① In 1968, Tramel showed that D is a Krull domain if and only if each proper principal ideal of D can be written as a finite v -product of prime ideals [*Factorization of principal ideals in the sense of quasi-equality*, Doctoral Dissertation, Louisiana State University, 1968], which also shows that the uniqueness of Nishimura's result is superfluous.
- ② In 1972, Levitz showed that D is a Krull domain if and only if each nonzero proper principal ideal of D can be written as a finite t -product of prime ideals, if and only if each nonzero t -ideal of D is a finite t -product of height one prime ideals of D [*A characterization of general Z.P.I.-rings*, Proc. Amer. Math. Soc. **32** (1972), 376-380].

Prime factorization of ideals IV

Theorem

The following statements are equivalent for a ring R .

- ① *R is a Krull ring.*
- ② *Every regular v -ideal I of R is a v -product of prime ideals, i.e., $I = (P_1 \cdots P_n)_t$ for some prime ideals P_1, \dots, P_n .*
- ③ *Every regular t -ideal is a t -product of prime ideals.*
- ④ *Every regular principal ideal is a v -product of prime ideals.*
- ⑤ *Every regular principal ideal is a t -product of prime ideals.*

This was proved by Kang for Marot ring case in [*A characterization of Krull rings with zero divisors*, J. Pure Appl. Algebra **72** (1991), 33-38] and for general case in [*Characterizations of Krull rings with zero divisors*, J. Pure Appl. Algebra **146** (2000), 283-290].

Outline

1 Motivation

2 Star operations

3 Krull rings

- Krull rings with zero divisors
- Prime factorization of ideals in Krull rings

4 Chang and Oh's Results

- A new star operation
- Prime u -factorization of ideals
- Mori-Nagata theorem
- Nagata rings
- u -Almost Dedekind rings

5 Juett's general w-ZPI ring

6 Personal opinion

The w -operation I

- Let R be an integral domain. A nonzero finitely generated ideal I of R is called a *GV-ideal* if $I^{-1} = R$, where GV stands for Glaz and Vasconcelos, and we denote by $GV(R)$ the set of GV-ideals of R .
- The w -operation on R is a star operation defined by

$$I_w = \{x \in T(R) \mid xJ \subseteq I \text{ for some } J \in GV(R)\}$$

for all $I \in K(R)$. Then w is of finite type, $t\text{-Max}(R) = w\text{-Max}(R)$, $w \leq t$, $(0)_w = (0)$, and $I_w = \bigcap_{P \in t\text{-Max}(R)} IR_P$ for all $I \in F(R)$.

- The w -operation was introduced by Hedstrom and Houston [Some remarks on star operations, J. Pure Appl. Algebra 18 (1980), 37-44] under the name of an F_∞ -operation.
- The notation of w -operation was first used by R. McCasland and F. Wang [On w -modules over strong Mori domains, Comm. Algebra 25 (1997), 1285-1306].

The w -operation II

- The w -operation was generalized to rings with zero divisors by Yin, Wang, Zhu, and Chen [w -modules over commutative rings, J. Korean Math. Soc. 48 (2011), 207-222].
- A finitely generated ideal J of R is called a *GV-ideal* if the homomorphism $\varphi: R \rightarrow \text{Hom}_R(J, R)$ given by $\varphi(r)(a) = ra$ is an isomorphism.
- If J is regular, then $\text{Hom}_R(J, R) = J^{-1}$, so φ is an isomorphism if and only if $J^{-1} = R$.
- The w -operation on R defined by, for all $A \in K(R)$,

$$A_w = \{x \in T(R) \mid xJ \subseteq A \text{ for some } J \in GV(R)\}$$

is a reduced star operation of finite type.

- F.G. Wang and H. Kim, *Foundations of Commutative Rings and Their Modules*, Algebra and Applications, vol.22, Singapore, Springer, 2016.

The u -operation I

- Let $rGV(R) = \{J \in GV(R) \mid J \text{ is regular}\}$. Then $rGV(R)$ is a multiplicative set of regular ideals of R .
- For each $I \in K(R)$, let

$$I_u = \{x \in T(R) \mid xJ \subseteq I \text{ for some } J \in rGV(R)\}.$$

Then $I_u \in K(R)$ and the map $u: K(R) \rightarrow K(R)$, given by $I \mapsto I_u$, is a reduced star operation of finite type on R .

The u -operation II

Theorem

The following conditions hold for all $a \in T(R)$ and $I, J \in K(R)$:

- ① $R_u = R$.
- ② $al_u \subseteq (al)_u$, and equality holds when a is regular.
- ③ $I \subseteq I_u$, and $I \subseteq J$ implies $I_u \subseteq J_u$.
- ④ $(I_u)_u = I_u$.
- ⑤ $(0)_u = (0)$.
- ⑥ $I_u = \bigcup \{(I_0)_u \mid I_0 \in K(R), I_0 \subseteq I, \text{ and } I_0 \text{ is finitely generated}\}$.

Thus, the map $u: K(R) \rightarrow K(R)$, given by $I \mapsto I_u$, is a reduced star operation of finite type on R .

The u -operation III

- A ring R satisfies *Property(A)* if each finitely generated \mathbb{Z} -ideal $I \subseteq \mathbb{Z}(R)$ has a nonzero annihilator. Then R has *Property(A)* if and only if $T(R)$ has *Property(A)*.
- The class of rings with *Property(A)* includes Noetherian rings, the polynomial ring, integral domains, and general Krull rings.

Proposition

- ① $u \leq w$.
- ② $I_u = I_w$ for all regular $I \in K(R)$.
- ③ If R satisfies *Property(A)*, then $u = w$ on R .

Characterizations of general Krull rings I

Theorem

The following statements are equivalent for a ring R .

- ① R is a general Krull ring.
- ② Each principal ideal of R is a finite u -product of prime ideals.
- ③ Each integral u -ideal of R is a finite u -product of prime ideals.
- ④ R is a Krull ring, $\dim(T(R)) = 0$, and each minimal prime ideal of R is a principal ideal.
- ⑤ R is a Krull ring, $\dim(T(R)) = 0$, and the zero element of R is a finite product of prime elements.

Characterizations of general Krull rings II

- Let R be a general Krull ring. Then $u = w$ on R because R satisfies Property(A). Hence, each principal ideal of R is a finite w -product of prime ideals.

Corollay

The following statements are equivalent for a ring R .

- R is a general Krull ring.
- Each principal ideal of R is a finite w -product of prime ideals.
- Each integral w -ideal of R is a finite w -product of prime ideals.

Corollay

If R is a general Krull ring, then $T(R)$ is a zero-dimensional PIR.

When is a Krull ring a general Krull ring ?

Question: If R is a Krull ring such that $T(R)$ is a zero-dimensional PIR, then R is a general Krull ring ?

Example

Let V be a rank-two discrete valuation ring, Q be a primary ideal of V such that $ht(\sqrt{Q}) = 1$ and $Q \subsetneq \sqrt{Q}$, and $R = V/Q$ be the factor ring of V modulo Q . Then the following conditions hold.

- 1 $T(R)$ is an SPR.
- 2 R is a Krull ring but not a general Krull ring.

Theorem

Let R be a Krull ring such that $T(R)$ is a zero-dimensional PIR. Then R is a general Krull ring if and only if R_P is a DVR for all $P \in X^1_r(R)$.

Mori-Nagata Theorem I

Theorem

The integral closure of a Noetherian domain is a Krull domain.

Proof.

- ① This was conjectured by Krull [*Idealtheorie, Ergebnisse der Math. und ihrer Grenz. vol.4, No.3, Berlin, Julius Springer, 1935*].
- ② The local case was proved by Mori [*On the integral closure of an integral domain*, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. **27** (1953), 249-256].
- ③ The general case was proved by Nagata [*On the derived normal rings of Noetherian integral domains*, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. **29** (1955), 293-303].

Mori-Nagata Theorem II

- Krull-Akizuki theorem says that every overring of a one-dimensional Noetherian domain is Noetherian.
- In 1953, Nagata constructed
 - ① a two-dimensional Noetherian domain R such that there is a non-Noetherian ring between R and its integral closure and
 - ② a three-dimensional Noetherian domain whose integral closure is not Noetherian.

Theorem

The integral closure of a two-dimensional Noetherian domain is Noetherian.

This was proved by Mori for local rings [*On the integral closure of an integral domain*, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. **27** (1953), 249-256], and generalized by Nagata [*On the derived normal rings of Noetherian integral domains*, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. **29** (1955), 293-303].

Mori-Nagata theorem III

- R is r-Noetherian if each regular ideal of R is finitely generated.
- In [*The integral closure of a Noetherian ring*, Trans. Amer. Math. Soc. **220** (1976), 159-166], Huckaba constructed an n -dimensional Noetherian ring whose integral closure is not Noetherian for any integer $n \geq 1$, and he showed

Theorem

- 1 *The integral closure of a Noetherian ring is a Krull ring.*
- 2 *If R is a Noetherian ring with $\dim(R) \leq 2$, then the integral closure of R is r-Noetherian.*

Mori-Nagata theorem IV

- Mori-Nagata theorem has been generalized to Non-Noetherian rings with zero divisors.

Theorem

Let \bar{R} be the integral closure of an r -Noetherian ring R .

- ① \bar{R} is a Krull ring.
- ② If $r\text{-dim}(R) \leq 2$, then \bar{R} is an r -Noetherian ring.

This theorem has been proved by a series of papers by Kang and Chang (1993, 1999, 2002, and 2023).

Mori-Nagata theorem V

The next example shows that the integral closure of a Noetherian ring R need not be general Krull even though $T(R)$ is an SPR.

Example

Let \mathbb{Q} be the field of rational numbers, $\mathbb{Q}[X]$ be the polynomial ring over \mathbb{Q} , and $A = \mathbb{Q}[X]/(X^2)$; so A is an SPR. Let $m = (X)/(X^2)$, Y be an indeterminate over A , and $R = A[Y]$. Then R is a one-dimensional Noetherian ring and $T(R) = A(Y)$, so $T(R)$ is an SPR. But, note that $N(A) = m$ and $N(R) = N(A)[Y]$, so $N(R) = m[Y]$ is a prime ideal of R . Hence, if \overline{R} is the integral closure of R , then $N(\overline{R}) = mT(R)$, which is a nonzero prime ideal of \overline{R} , but since $N(\overline{R}) \cap R = m[Y]$, $N(\overline{R})$ is not a maximal ideal of \overline{R} . Thus, \overline{R} is a Krull ring but \overline{R} is not a general Krull ring.

Mori-Nagata theorem VI

- R is a Noetherian ring and \overline{R} is the integral closure of R .

Theorem

If R is integrally closed, then R is a general Krull ring if and only if $T(R)$ is a PIR.

Corollay

If $\dim R \leq 2$, then \overline{R} is a general Krull ring if and only if \overline{R} is a Noetherian ring and $T(R)$ is a PIR.

Nagata ring I

- Let R be a ring, X be an indeterminate over R , $R[X]$ be the polynomial ring over R , and

$$N_* = \{f \in R[X] \mid c(f)_* = R\}$$

for $* = d, u, w, v$, so $N_d \subseteq N_u \subseteq N_w \subseteq N_v$.

Proposition

- N_u is a saturated multiplicative set of $R[X]$.
- Each element of N_u is regular. Hence, $R[X]_{N_u}$ is an overring of $R[X]$.
- $\text{Max}(R[X]_{N_u}) = \{P[X]_{N_u} \mid P \in u\text{-}\text{Max}(R)\}$.

- It is clear that if R is an integral domain, then $N_u = N_w = N_v$ and $R[X]_{N_u}$ is the (t -)Nagata ring of R .

Nagata ring II

Theorem

The following are equivalent for a ring R with Property(A).

- ① R is a Krull ring.
- ② $R[X]_{N_u}$ is a Krull ring.
- ③ $R[X]_{N_u}$ is a regular π -ring.
- ④ $R[X]_{N_u}$ is a factorial ring.
- ⑤ $R[X]_{N_u}$ is a Dedekind ring.
- ⑥ $R[X]_{N_u}$ is a regular PIR.

Corollay

If R is the integral closure of a Noetherian ring, then $R[X]_{N_u}$ is a regular PIR.

Nagata ring III

- Let $R(X) = R[X]_{N_d}$. Then $R(X)$ is called the Nagata ring of R and $R(X) \subseteq R[X]_{N_u}$.

Theorem

The following statements are equivalent for a ring R .

- 1 R is a general Krull ring.
- 2 $R[X]_{N_u}$ is a general Krull ring.
- 3 $R[X]_{N_u}$ is a π -ring.
- 4 $R[X]_{N_u}$ is a UFR.
- 5 $R[X]_{N_u}$ is a general ZPI-ring.
- 6 $R[X]_{N_u}$ is a PIR.
- 7 $R(X)$ is a general Krull ring.

u -Almost Dedekind rings and general Krull rings I

- A ring is a *u -Noetherian ring* if it satisfies the ascending chain condition on its integral u -ideals.
- An integral domain D is a Krull domain if and only if D is a u -Noetherian domain (strong Mori domain) and R_P is a DVR for all maximal u -ideals P of R .

Theorem

The following statements are equivalent for a ring R .

- ① R is a general Krull ring.
- ② R is a u -Noetherian ring such that R_P is a DVR or an SPR for all maximal u -ideals P of R .

u -Almost Dedekind rings and general Krull rings II

Corollay

A ring R is a general ZPI-ring if and only if R is Noetherian and R_M is a DVR or an SPR for all $M \in \text{Max}(R)$.

- We will say that R is an almost Dedekind ring (resp., a u -almost Dedekind ring) if R_M is a DVR or an SPR for all maximal ideals (resp., maximal u -ideals) M of R .
- Hence, R is a general ZPI-ring (resp., general Krull ring) if and only if R is a Noetherian almost Dedekind ring (resp., a u -almost Dedekind u -Noetherian ring).

u-Almost Dedekind rings and general Krull rings III

Corollary

The following statements are equivalent for a ring R .

- ① R is a general Krull ring.
- ② R satisfies the following conditions.

$$\textcircled{1} \quad R = \bigcap_{P \in X_r^1(R)} R_{[P]}.$$

- ② R_P is a DVR for all $P \in X_r^1(R)$ and R_P is an SPR for all prime Z-ideals P of R .
- ③ Each principal ideal of R has a finite number of minimal prime ideals.
- ③ R is a *u*-almost Dedekind ring in which each principal ideal has a finite number of minimal prime ideals.

Outline

1 Motivation

2 Star operations

3 Krull rings

- Krull rings with zero divisors
- Prime factorization of ideals in Krull rings

4 Chang and Oh's Results

- A new star operation
- Prime u -factorization of ideals
- Mori-Nagata theorem
- Nagata rings
- u -Almost Dedekind rings

5 Juett's general w-ZPI ring

6 Personal opinion

Juett's general w-ZPI ring I

- In [General w-ZPI-rings and a tool for characterizing certain classes of monoid rings, Comm. Algebra 51 (2023), 1117-1134], Juett introduced the notion of general w-ZPI rings.
- Juett called R a general w-ZPI ring if every proper w-ideal of R is a finite w-product of prime w-ideals. Then, among other things, he proved

Theorem (J.R. Juett, 2023, Comm. Algebra)

The following statements are equivalent.

- ① R is a general w-ZPI ring.
- ② R is a finite direct product of Krull domains and SPRs.
- ③ $R[X]_{N_w}$ is an Euclidean ring.

Therefore, Juett's general w-ZPI ring is exactly the general Krull ring of this talk.

Juett's general w-ZPI ring II

- Let S be a commutative cancellative additive monoid and $R[S]$ be the semigroup ring of S over R . Juett has studied several factorization properties of $R[S]$ including Dedekind rings, π -rings, UFRs, and general w-ZPI rings [J1, J2, J3].

[J1] J.R. Juett, *General w-ZPI-rings and a tool for characterizing certain classes of monoid rings*, Comm. Algebra 51 (2023), 1117-1134.

[J2] J.R. Juett, C.P. Mooney, and L.W. Ndungu, *Unique factorization of ideals in commutative rings with zero divisors*, Comm. Algebra 49 (2021), 2101-2125.

[J3] J.R. Juett, C.P. Mooney, and R.D. Roberts, *Unique factorization properties in commutative monoid rings with zero divisors*, Semigroup Forum 102 (2021), 674-696.

Outline

1 Motivation

2 Star operations

3 Krull rings

- Krull rings with zero divisors
- Prime factorization of ideals in Krull rings

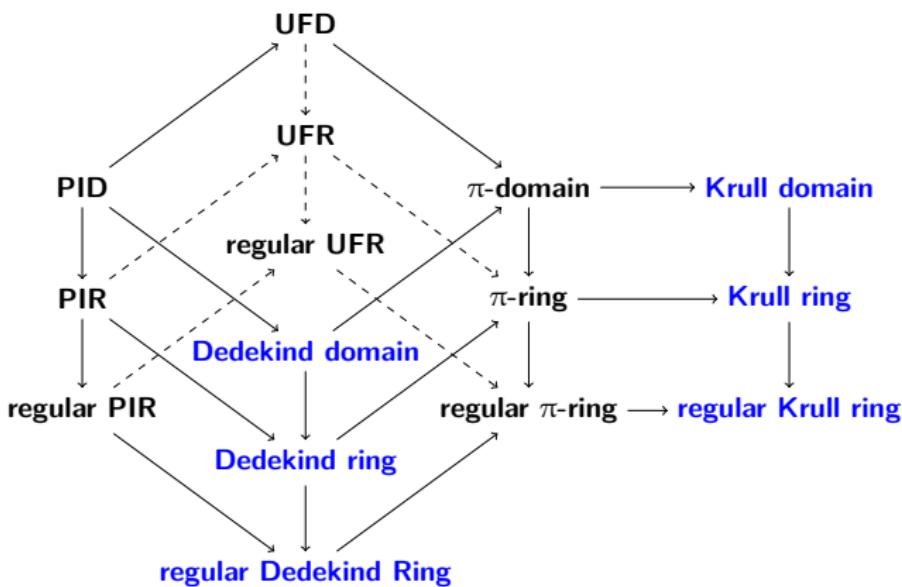
4 Chang and Oh's Results

- A new star operation
- Prime u -factorization of ideals
- Mori-Nagata theorem
- Nagata rings
- u -Almost Dedekind rings

5 Juett's general w-ZPI ring

6 Personal opinion

Renaming ?



What is a star operation ?

- The idea of localization comes from algebraic geometry. The localization at a point p allows us to focus on only rational functions that are well-defined at the point p .
- A star operation is a similar tool for studying the ideal factorization properties of commutative rings in the sense that we are just interested in ideals that we certainly have in mind.
- For example, in Krull domains, every nonzero proper principal ideal is a unique finite v -product of height-one prime ideals. Hence, when we study the ideal factorization of Krull domains, it is enough to look into the height-one prime ideals.
- [Localization](#).

All of the results in this talk appear in

G.W. Chang and J.S. Oh, Prime factorization of ideals in
commutative rings, with a focus on Krull rings. J. Korean Math.
Soc. 60 (2023), no. 2, 407–464.

Thank you !!