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All rings considered in this talk are commutative with identity.
Let R be a ring with total quotient ring T(R).
e An element of R is regular if it is not a zero divisor.

e Z(R) denotes the set of zero divisors of R.

e reg(R) is the set of regular elements of R, so T(R) = Ryeg(r).-

e An ideal of R is regular if it contains a regular element of R.

e An ideal [ of R is a Z-ideal if | C Z(R).
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Integral domain Case

m-domain —— Krull domain

_ / UFD \
\ _—

Dedekind domain

e An integral domain D is a -domain if each nonzero proper
principal ideal of D is a finite product of prime ideals.

e D is a Krull domain if each nonzero proper principal ideal of D is
a finite v-product (t-product) of prime ideals.
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Ring with zero divisor case

UFR
PIR < >7‘r—ring4>

general ZPI ring

e R is a principal ideal ring (PIR) if each ideal of R is principal.

e R is a (Fletcher's) unique factorization ring (UFR) if each
element of R can be written as a finite product of prime elements.

e R is a general ZPI ring if each ideal of R can be written as a
finite product of prime ideals.

e R is a m-ring if each principal ideal of R can be written as a
finite product of prime ideals.

e (Question) What is a natural generalization of Krull domains to
rings with zero divisors 7
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Ring characterized by regular elements or ideals case

factorial ring

/ \)
regular PIR regular t-ring —— Krull ring
\ /

Dedekind ring

e R is a regular PIR if each regular ideal of R is principal.

e R is a factorial ring if each regular element of R can be written
as a finite product of prime elements.

e R is a Dedekind ring if each regular ideal of R can be written as
a finite product of prime ideals.

e R is a regular 7-ring if each regular principal ideal of R can be
written as a finite product of prime ideals.

e R is a Krull ring if each regular principal ideal of R can be
written as a finite v-product of prime ideals.
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Krull domains

Let D be an integral domain with quotient field K and X'(D) be
the set of nonzero minimal (i.e., height-one) prime ideals of D.
Then D is a Krull domain if

© D =pexip) Dp.
@ Dp is a DVR for all P € X(D), and

© each nonzero nonunit of D is contained in only a finitely many
prime ideals in X1(D).

In 1955, Nagata proved that D is a Krull domain if and only if
there exists a family A of DVRs with quotient field K such that (i)
D is the intersection of all rings in A and (ii) every nonzero
element of D is a unit in all but a finite number of rings in A.

The theory of Krull domains was originated by Krull [W. Krull,
Uber die Zerlegung der Hauptideale in allgemeinen Ringen, Math.
Ann. 105 (1931), 1-14.].
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SPR, PIR and general ZPI ring

e A ring R is said to be a special primary ring (SPR) or a special
principal ideal ring (SPIR) if R is a local ring with maximal ideal
M such that M is principal and M" = (0) for some integer n > 1.

Theorem (1960, Zariski and Samuel)

R is a PIR if and only if R is a finite direct sum of PIDs and SPRs.

e In 1940, S. Mori first studied the general ZPI-ring, where the
letters ZPI stands for Zerlegung Primideale.

Theorem (1951, Asano)

R is a general ZPlI-ring if and only if R is a finite direct sum of
Dedekind domains and SPRs.
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UFR and 7t-ring

e In 1967, Fletcher introduced the notion of a unique factorization
ring (UFR) which is just a UFD in case of integral domains and he
showed

Theorem (1970-1971, C.R. Fletcher)

R is a UFR if and only if R is a finite direct sum of UFDs and
SPRs.

e In 1939, S. Mori gave a complete description of a --domain.

Theorem (1940, S. Mori)

R is a m-ring if and only if R is a finite direct sum of -domains
and SPRs.
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Introduction of a general Krull ring

e Inspired by these four types of rings and by the name of general
ZPIl-rings, we will say that R is a general Krull ring if R is a finite
direct sum of Krull domains and SPRs, so we have the following
implications.

UFR
/ \ Krull domain
PIR

T-ring — general Krull ring

O L

general ZPlI ring
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Counterexample

e R is a Krull ring if and only if every regular principal ideal of R
can be written as a finite v-product (or t-product) of prime ideals.

However, the next example shows that this is not true of general
Krull rings.

Let R =7 x QQ be the direct sum of Z and Q.

© 7Z and Q are Krull domains, so R is a general Krull ring.

@ If I =(1,0)R, then I; = I, = R. Hence, | cannot be written
as a finite t- nor v-product of prime ideals.
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Question and purpose

e |t is easy to see that D is a Krull domain if and only if there is a
star operation *x on D such that each nonzero proper principal ideal
of D can be written as a finite x-product of prime ideals.

Is there a star operation x on a ring so that a general Krull ring
can be characterized as a ring in which each principal ideal can be
written as a finite x-product of prime ideals?

The purpose of this talk is to answer to Question affirmatively.
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Fractional ideals

An R-submodule of T(R) is called a Kaplansky fractional ideal. A
Kaplansky fractional ideal of R is regular if it contains a regular
element of R.

e K(R) is the set of Kaplansky fractional ideals of R.

e F(R) is the set of fractional ideals of R (i.e., I € F(R) if and only
if I € K(R) and dI C R for some d € reg(R)), so F(R) C K(R).

e An (integral) ideal of R is a fractional ideal of R that is
contained in R.
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Definition of star operations

e A mapping *: K(R) — K(R), given by | — I, is a star operation
on R if the following four conditions are satisfied for all
I,J e K(R) and a € T(R):
QO R.=R,
Q@ al, C (al),, and equality holds when a is regular.
Q@ /I C I, and | C J implies that I, C J,.
Q (L)« =1
e For all / € K(R), let

L, = U{J* | J € K(R) is finitely generated and J C [}.

Then *¢ is also a star operation on R.

e The star operation * is said to be of finite type if * = *¢, and *
is said to be reduced if (0), = (0). Clearly, ¢ is of finite type, and
x is reduced if and only if *¢ is reduced.
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*-ideals

e An | € K(R) is a x-ideal if I, = I. A x-ideal I is of finite type if
| = J, for some finitely generated subideal J of /. A x-ideal is a
maximal x-ideal if it is maximal among proper integral *-ideals.
o If x is a star operation of finite type, then

© a prime ideal minimal over an integral x-ideal is a *-ideal,

@ a proper integral x-ideal is contained in a maximal *-ideal, and

© a maximal x-ideal is a prime ideal.

e Let x; and %, be star operations on R. We say that x; < xp if
I, C I, for all I € K(R), equivalently, (L, )s, = (l)s, = k.
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The d-, v- and t-operation

e The identity function d : K(R) — K(R) is a star operation.
e For | € K(R), let

I" =(R:rr) ) ={x € T(R) | xI C R},
then /=1 € K(R). The v- and t-operation are defined by

I, =Y forall e K(R), and t=vs.

e It is known that d < x¢ < %, % < t < v, and x < v for any star
operation x on R.
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x-invertibility

e An | € K(R) is said to be invertible if II™* = R.

e As the x-operation analog, | € K(R) is said to be x-invertible if
(1, =R.

Proposition

If % is a star operation of finite type, then

@ every x-invertible Kaplansky fractional x-ideal is of finite type
and a t-invertible t-ideal,

@ every x-invertible prime x-ideal is a maximal t-ideal.

e It is well known that an invertible ideal is regular, while a
x-invertible ideal need not be regular.
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Outline

© Krull rings
o Krull rings with zero divisors

e Prime factorization of ideals in Krull rings
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Valuation rings

A valuation on a ring R is a mapping v from R onto a totally
ordered abelian group G with co adjoined such that

(i) v(ab) = v(a) + v(b),

(ii) v(x + y) > min{v(a), v(b)} for all a,b € R, and

(iii) v(1) = 0 and v(0) = oo.

elf R, ={xe€ R|v(x)>0}and P, ={x € R|v(x) >0}, then R,
is a subring of R, P, is a prime ideal of R,, and (R,, P,) is called a
valuation pair of R.

e The valuation v on R was first studied by Manis when R is a
ring with zero divisors [Va/uations on a commutative ring, Proc.
Amer. Math. Soc. 20 (1969), 193-198].

o If G =7 is the additive group of integers, then the valuation on
R is called a rank-one discrete valuation on R.
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Rank-one discrete valuation rings

Let v be a rank-one discrete valuation on T(R) such that
R={xeT(R)|v(x)>0} and P={xe T(R)]|v(x) >0}

@ R is called a rank-one discrete valuation ring (rank-one DVR).

@ If P is regular (i.e., P contains a regular element), then
reg-htP =1 (i.e., P is a minimal regular prime ideal).

@ If T(R) is a field, then P is the maximal ideal of R, but this is
not true in general.
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Definition of Krull rings

We say that R is a Krull ring if there exists a family
{(Vx, Py) | @ € A} of rank-one discrete valuation pairs of T(R)
with associated valuations {v | @« € A} such that

(i) R=MValaxe A}

(ii) for each regular a € T(R), vy(a) =0 for almost all x € A
and Py is a regular ideal for all o € A.

e Krull ring was introduced by J. Marot (1968), J. Huckaba
[Integral closure of a Noetherian ring, Trans. Amer. Math. Soc.
220 (1976), 159-666], and Kennedy [Krull Rings, Pacific J. Math.
89 (1980), 131-136).
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Marot rings

R is a Marot ring if each regular ideal of R is generated by a set of
regular elements in R, which was introduced by J. Marot (1969).

A ring R is a Marot ring if R is one of the followings.
© R is an integral domain.
@ R is a Noetherian ring.
@ dimT(R)=0.

@ R is an overring of a Marot ring.

© R is a general Krull ring.

D. Portelli and W. Spangher also studied Krull rings with
additional assumption that the rings are Marot [Krull rings with
zero divisors, Comm. Algebra 11 (1983), 1817-1851].
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Characterizations of Krull rings

e X}(R) is the set of minimal regular prime ideals of R.
® Rpp={z€ T(R) | zx € R for some x € R\ P}.

R is a Krull ring if and only if R satisfies the followings;
Q@ R= N Rp,
PeX(R)
@ (Rip, [PIRp)) is a rank-one DVR for all P € X}(R), and
© each regular element of R is contained in only finitely many
prime ideals in X}(R).

This was proved by D. Portelli and W. Spangher in Marot Krull
ring case (1983) and by Alajbegovi¢ and Osmanagié, in general
case [Essential valuations of Krull rings with zero divisors, Comm.
Algebra 18 (1990), 2007-2020].
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Prime factorization of ideals |

@ In 1935, Krull stated (without proof) that D is a Krull domain
if and only if each v-ideal / of D is a unique finite v-product
of height-one prime ideals of D, i.e., I = (P{*--- Pg"), for
some distinct height-one prime ideals Pi,..., P, and positive
integers ey, ..., e, such that the expression / = (P --- Pg"),
is unique [/dealtheorie, Ergebnisse der Math. und ihrer Grenz.
vol.4, No.3, Berlin, Julius Splinger, 1935].

@ In 1963, Nishimura showed that D is a Krull domain if and
only if each v-ideal of D is a unique finite v-product of
height-one prime ideals of D, if and only if D is a completely
integrally closed Mori domain [Unique factorization of ideals
in the sense of quasi-equality, J. Math. Kyoto Univ. 3 (1963),
115-125].
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Prime factorization of ideals I

@ In 1968, Tramel showed that D is a Krull domain if and only
if each proper principal ideal of D can be written as a finite
v-product of prime ideals [Factorization of principal ideals in
the sense of quasi-equality, Doctoral Dissertation, Louisiana
State University, 1968], which also shows that the uniqueness
of Nishimura's result is superfluous.

@ In 1972, Levitz showed that D is a Krull domain if and only if
each nonzero proper principal ideal of D can be written as a
finite t-product of prime ideals, if and only if each nonzero
t-ideal of D is a finite t-product of height one prime ideals of
D [A characterization of general Z.P.l.-rings, Proc. Amer.
Math. Soc. 32 (1972), 376-380].
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Prime factorization of ideals IV

The following statements are equivalent for a ring R.
Q R is a Krull ring.

@ Every regular v-ideal | of R is a v-product of prime ideals, i.e.,
I = (P1---Py,)t for some prime ideals P1,...,P,.

© Every regular t-ideal is a t-product of prime ideals.

@ Every regular principal ideal is a v-product of prime ideals.

© Every regular principal ideal is a t-product of prime ideals.

This was proved by Kang for Marot ring case in [A characterization
of Krull rings with zero divisors, J. Pure Appl. Algebra 72 (1991),
33-38] and for general case in [Characterizations of Krull rings with
zero divisors, J. Pure Appl. Algebra 146 (2000), 283-290].
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Outline

@ Chang and Oh’s Results
@ A new star operation
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Mori-Nagata theorem
Nagata rings
u-Almost Dedekind rings
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The w-operation |

e Let R be an integral domain. A nonzero finitely generated ideal /
of R is called a GV-ideal if "1 = R, where GV stands for Glaz and
Vasconselos, and we denote by GV/(R) the set of GV-ideals of R.

e The w-operation on R is a star operation defined by
ly ={x € T(R)|xJ C I forsome Je GV(R)}

for all I € K(R). Then w is of finite type, t-Max(R) = w-Max(R),
w<t, (0, =(0), and I, = ﬂpet_Max(R) IRp for all I € F(R).

e The w-operation was introduced by Hedstrom and Houston
[Some remarks on star operations, J. Pure Appl. Algebra 18
(1980), 37-44] under the name of an F-operation.

e The notation of w-operation was first used by R. McCasland and
F.Wang [On w-modules over strong Mori domains, Comm.
Algebra 25 (1997), 1285-1306].
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The w-operation |l

e The w-operation was generalized to rings with zero divisors by
Yin, Wang, Zhu, and Chen [w-modules over commutative rings, J.
Korean Math. Soc. 48 (2011), 207-222].

e A finitely generated ideal J of R is called a GV-ideal if the
homomorphism ¢: R — Homg(J, R) given by @(r)(a) = ra is an
isomorphism.

e If J is regular, then Homg(J,R) = J71, so ¢ is an isomorphism
if and only if J71 = R.

e The w-operation on R defined by, for all A € K(R),
Ay ={x€ T(R)| xJ C A for some J € GV(R)}
is a reduced star operation of finite type.

e F.G. Wang and H. Kim, Foundations of Commutative Rings and
Their Modules, Algebra and Applications, vol.22, Singapore,
Springer, 2016.
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The u-operation |

o Let rGV(R) ={J € GV(R) | J is regular}. Then rGV(R) is a
multiplicative set of regular ideals of R.

e For each | € K(R), let
l,={xe T(R)|xJ C I forsome Je rGV(R)}.

Then I, € K(R) and the map u: K(R) — K(R), given by | — |I,,
is a reduced star operation of finite type on R.
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The u-operation |l

The following conditions hold for all a € T(R) and I, J € K(R):
QO R,=R.
@ al, C (al),, and equality holds when a is regular.
Q@ /ICl, and | C J implies I, C J,.
Q (l)u=lu

Q I,=Ulb)ull €K(R), Iy 1, and Iy is finitely generated}.

Thus, the map u: K(R) — K(R), given by | — |,, is a reduced star
operation of finite type on R.

v
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The u-operation Ill

e A ring R satisfies Property(A) if each finitely generated Z-ideal
I C Z(R) has a nonzero annihilator. Then R has Property(A) if
and only if T(R) has Property(A).

e The class of rings with Property(A) includes Noetherian rings,
the polynomial ring, integral domains, and general Krull rings.

Proposition

Q uv<w.
Q I,=1, for all regular | € K(R).
© If R satisfies Property(A), then u = w on R.
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Characterizations of general Krull rings |

The following statements are equivalent for a ring R.

© R is a general Krull ring.

@ Each principal ideal of R is a finite u-product of prime ideals.
© Each integral u-ideal of R is a finite u-product of prime ideals.
o

R is a Krull ring, dim(T(R)) =0, and each minimal prime
ideal of R is a principal ideal.

©

R is a Krull ring, dim(T(R)) =0, and the zero element of R
is a finite product of prime elements.
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Characterizations of general Krull rings Il

e Let R be a general Krull ring. Then u = w on R because R
satisfies Property(A). Hence, each principal ideal of R is a finite
w-product of prime ideals.

The following statements are equivalent for a ring R.

© R is a general Krull ring.
@ Each principal ideal of R is a finite w-product of prime ideals.

© Each integral w-ideal of R is a finite w-product of prime
ideals.

If R is a general Krull ring, then T(R) is a zero-dimensional PIR.

A

.
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When is a Krull ring a general Krull ring ?

Question: If R is a Krull ring such that T(R) is a zero-dimensional
PIR, then R is a general Krull ring ?

Let V' be a rank-two discrete valuation ring, Q be a primary ideal
of V such that ht(~/Q) =1 and Q C VQ, and R = V/Q be the
factor ring of V. modulo Q. Then the following conditions hold.

©@ T(R) is an SPR.
@ R is a Krull ring but not a general Krull ring.

Let R be a Krull ring such that T(R) is a zero-dimensional PIR.

Then R is a general Krull ring if and only if Rp is a DVR for all
P c X}(R).

.
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Mori-Nagata Theorem |

The integral closure of a Noetherian domain is a Krull domain.

© This was conjectured by Krull [/dealtheorie, Ergebnisse der
Math. und ihrer Grenz. vol.4, No.3, Berlin, Julius Splinger,
1935].

@ The local case was proved by Mori [On the integral closure of
an integral domain, Mem. Coll. Sci. Univ. Kyoto Ser. A.
Math. 27 (1953), 249-256].

© The general case was proved by Nagata [On the derived
normal rings of Noetherian integral domains, Mem. Coll. Sci.
Univ. Kyoto Ser. A. Math. 29 (1955), 293-303].

Ol
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Mori-Nagata Theorem Il

e Krull-Akizuki theorem says that every overring of a
one-dimensional Noetherian domain is Noetherian.
e In 1953, Nagata constructed
@ a two-dimensional Noetherian domain R such that there is a
non-Noetherian ring between R and its integral closure and
@ a three-dimensional Noetherian domain whose integral closure
is not Noetherian.

The integral closure of a two-dimensional Noetherian domain is
Noetherian.

This was proved by Mori for local rings [On the integral closure of
an integral domain, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math.
27 (1953), 249-256], and generalized by Nagata [On the derived
normal rings of Noetherian integral domains, Mem. Coll. Sci.
Univ. Kyoto Ser. A. Math. 29 (1955), 293-303].
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Mori-Nagata theorem Il

e R is r-Noetherian if each regular ideal of R is finitely generated.

e In [The integral closure of a Noetherian ring, Trans. Amer.
Math. Soc. 220 (1976), 159-166], Huckaba constructed an
n-dimensional Noetherian ring whose integral closure is not
Noetherian for any integer n > 1, and he showed

@ The integral closure of a Noetherian ring is a Krull ring.

@ If R is a Noetherian ring with dim(R) < 2, then the integral
closure of R is r-Noetherian.
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Mori-Nagata theorem IV

e Mori-Nagata theorem has been generalized to Non-Noetherian
rings with zero divisors.

Let R be the integral closure of an r-Noetherian ring R.
@ R is a Krull ring.
Q If r-dim(R) < 2, then R is an r-Noetherian ring.

This theorem has been proved by a series of papers by Kang and
Chang (1993, 1999, 2002, and 2023).
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Mori-Nagata theorem V

The next example shows that the integral closure of a Noetherian
ring R need not be general Krull even though T(R) is an SPR.

Let Q be the field of rational numbers, Q[X] be the polynomial ring
over Q, and A = Q[X]/(X?); so Ais an SPR. Let m = (X)/(X?),
Y be an indeterminate over A, and R = A[Y]. Then R is a
one-dimensional Noetherian ring and T(R) = A(Y), so T(R) is an
SPR. But, note that N(A) = m and N(R) = N(A)[Y], so

N(R) = ml[Y] is a prime ideal of R. Hence, if R is the integral
closure of R, then N(R) = mT(R), which is a nonzero prime ideal
of R, but since N(R) N R = m[Y], N(R) is not a maximal ideal of
R. Thus, R is a Krull ring but R is not a general Krull ring.
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Mori-Nagata theorem VI

e R is a Noetherian ring and R is the integral closure of R.

If R is integrally closed, then R is a general Krull ring if and only if
T(R) is a PIR.

If dim R < 2, then R is a general Krull ring if and only if R is a
Noetherian ring and T(R) is a PIR.
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Nagata ring |

e Let R be aring, X be an indeterminate over R, R[X] be the
polynomial ring over R, and

Ny ={f e RIX] | c(f)x =R}

for x =d,u,w,v,so Ny C N, C N, CN,.

Proposition

@ N, is a saturated multiplicative set of R[X].

@ Each element of N, is regular. Hence, R[Xly, is an overring
of R[X].

@ Max(RIX]y,) = (PIXln, | P €u-Max(R)}.

e |t is clear that if R is an integral domain, then N, = N, = N,
and R[X]p, is the (t-)Nagata ring of R.
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Nagata ring Il

The following are equivalent for a ring R with Property(A).
Q@ R is a Krull ring.

Q RIX]
Q RIX]
Q RIX]
9 RIX]
0 RIX]

n, is a Krull ring.

N, is a regular Tt-ring.
n, is a factorial ring.
X
X

N, s a Dedekind ring.

N, is a regular PIR.

If R is the integral closure of a Noetherian ring, then R[X]y, is a
regular PIR.

.
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Nagata ring Il

o Let R(X) = R[X]n,. Then R(X) is called the Nagata ring of R
and R(X) C RIX]n,-

The following statements are equivalent for a ring R.

© R is a general Krull ring.

@ RI[Xlp, is a general Krull ring.
Q@ R[Xlp, is a m-ring.

Q R[Xly, is a UFR.

@ RI[Xln, is a general ZPl-ring.
Q@ R[Xly, is a PIR.

@ R(X) is a general Krull ring.
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u-Almost Dedekind rings and general Krull rings |

e A ring is a u-Noetherian ring if it satisfies the ascending chain
condition on its integral u-ideals.

e An integral domain D is a Krull domain if and only if D is a
u-Noetherian domain (strong Mori domain) and Rp is a DVR for
all maximal u-ideals P of R.

The following statements are equivalent for a ring R.

Q R is a general Krull ring.

@ R is a u-Noetherian ring such that Rp is a DVR or an SPR for
all maximal u-ideals P of R.
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u-Almost Dedekind rings and general Krull rings Il

A ring R is a general ZPI-ring if and only if R is Noetherian and
Ry is a DVR or an SPR for all M € Max(R).

e We will say that R is an almost Dedekind ring (resp., a u-almost
Dedekind ring) if Ry is @ DVR or an SPR for all maximal ideals
(resp., maximal u-ideals) M of R.

e Hence, R is a general ZPl-ring (resp., general Krull ring) if and
only if R is a Noetherian almost Dedekind ring (resp., a u-almost
Dedekind u-Noetherian ring).
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u-Almost Dedekind rings and general Krull rings Il

The following statements are equivalent for a ring R.

© R is a general Krull ring.
@ R satisfies the following conditions.
@ R= 1 R
PeXL(R)
@ Rp isa DVR for all P € X}(R) and Rp is an SPR for all prime
Z-ideals P of R.
© Each principal ideal of R has a finite number of minimal prime
ideals.

© R is a u-almost Dedekind ring in which each principal ideal
has a finite number of minimal prime ideals.
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Juett’s general w-ZPI ring |

e In [General w-ZPl-rings and a tool for characterizing certain
classes of monoid rings, Comm. Algebra 51 (2023), 1117-1134],
Juett introduced the notion of general w-ZPI rings.

e Juett called R a general w-ZPI ring if every proper w-ideal of R
is a finite w-product of prime w-ideals. Then, among other things,
he proved

Theorem (J.R. Juett, 2023, Comm. Algebra)

The following statements are equivalent.
Q@ R is a general w-ZPI ring.
@ R is a finite direct product of Krull domains and SPRs.
@ RI[Xlp, is an Euclidean ring.

Therefore, Juett's general w-ZPI ring is exactly the general Krull
ring of this talk.
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Juett's general w-ZPI ring |l

e Let S be a commutative cancellative additive monoid and R[S]
be the semigroup ring of S over R. Juett has studied several
factorization properties of R[S] including Dedekind rings, 7t-rings,
UFRs, and general w-ZPI rings [J1, J2, J3].

[J1] J.R. Juett, General w-ZPI-rings and a tool for characterizing
certain classes of monoid rings, Comm. Algebra 51 (2023),
1117-1134.

[J2] J.R. Juett, C.P. Mooney, and L.W. Ndungu, Unique
factorization of ideals in commutative rings with zero divisors,
Comm. Algebra 49 (2021), 2101-2125.

[J3] J.R. Juett, C.P. Mooney, and R.D. Roberts, Unique
factorization properties in commutative monoid rings with zero
divisors, Semigroup Forum 102 (2021), 674-696.
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Renaming ?

UFD

U

, A

F
F

regular UFR

| |
J

regular PIR regular 7-ring — regular Krull ring

xedekmd V

regular Dedekind Ring
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What is a star operation ?

e The idea of localization comes from algebraic geometry. The
localization at a point p allows us to focus on only rational
functions that are well-defined at the point p.

e A star operation is a similar tool for studying the ideal
factorization properties of commutative rings in the sense that we
are just interested in ideals that we certainly have in mind.

e For example, in Krull domains, every nonzero proper principal
ideal is a unique finite v-product of height-one prime ideals.
Hence, when we study the ideal factorization of Krull domains, it is
enough to look into the height-one prime ideals.

e Localization.
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All of the results in this talk appear in

G.W. Chang and J.S. Oh, Prime factorization of ideals in
commutative rings, with a focus on Krull rings. J. Korean Math.
Soc. 60 (2023), no. 2, 407-464.

Thank you !
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