

Jaffard families and extension of star operations

Dario Spirito

Università di Roma Tre

Conference on Rings and Factorizations
Graz, February 23rd, 2018

Star operations

- We will always take an integral domain D with quotient field K .
- Let $\mathbf{F}(D)$ be the set of D -submodules of K .
- Let $\mathcal{F}(D)$ be the set of *fractional ideals* of D , i.e., of the $I \in \mathbf{F}(D)$ such that $xI \subseteq D$ for some $x \in K$.

Definition

A *star operation* on D is a map $* : \mathcal{F}(D) \longrightarrow \mathcal{F}(D)$ such that

- $I \subseteq I^*$;
- $I \subseteq J \implies I^* \subseteq J^*$;
- $(I^*)^* = I^*$.
- $(xI)^* = x \cdot I^*$;
- $D^* = D$.

Examples

- The **identity** $d : I \mapsto I$.
- The ***v*-operation** $v : I \mapsto (D : (D : I))$.
- The ***t*-operation**:

$$t : I \mapsto \bigcup \{ J^v \mid J \subseteq I, J \text{ is finitely generated} \}.$$

- If $\mathcal{Y} \subseteq \text{Over}(D)$ and $\bigcap_{T \in \mathcal{Y}} T = D$, we can define

$$\wedge_{\mathcal{Y}} : I \mapsto \bigcap_{T \in \mathcal{Y}} IT.$$

- If $\Delta \subseteq \text{Spec}(D)$ and $\bigcap_{P \in \Delta} D_P = D$, we can define

$$s_{\Delta} : I \mapsto \bigcap_{P \in \Delta} ID_P.$$

Types of closure operations

- $*$ is **of finite type** if, for every I ,

$$I^* = \bigcup \{F^* \mid F \subseteq I, F \text{ is finitely generated}\}$$

- $*$ is **spectral** if it is in the form s_Δ .
- $*$ is **stable** if $(I \cap J)^* = I^* \cap J^*$ for all I, J .
- $*$ is **Noetherian** if the set

$$\mathcal{I}^*(D) := \{I \in \mathcal{F}(D) \mid I \subseteq D, I = I^*\}$$

satisfies the ascending chain condition.

Structures on $\text{Star}(D)$

- **Order structure:** $*_1 \leq *_2$ if $I^{*_1} \subseteq I^{*_2}$ for every $I \in \mathcal{F}(D)$.
 - ▶ $\text{Star}(D)$ is a complete lattice.
 - ▶ v is the maximum of $\text{Star}(D)$.
 - ▶ t is the maximum of $\text{Star}_f(D)$.
- **Topological structure:** the topology is the one generated by the sets

$$V_I := \{ * \in \text{Star}(D) \mid 1 \in I^* \}.$$

- ▶ $\text{Star}_f(D)$ is better behaved than $\text{Star}(D)$.
- **Set structure:** study of the cardinality.
 - ▶ For example, when is $\text{Star}(D)$ finite? When $|\text{Star}(D)| = 1$?
 - ▶ There are no general results, but some can be said when D is Noetherian or when it is integrally closed.
 - ▶ For example, if D is Noetherian then $|\text{Star}(D)| = 1$ if and only if D is Gorenstein of dimension 1.

Extensions of star operations

Let D be an integral domain and T a flat overring of D .

Definition

A star operation $*$ on D is *extendable* to T if the map

$$\begin{aligned} *_T: \mathcal{F}(T) &\longrightarrow \mathcal{F}(T) \\ IT &\longmapsto I^*T \end{aligned}$$

is well-defined.

- Equivalently, $*$ is extendable if $IT = JT$ implies $I^*T = J^*T$.
- Since T is flat, every ideal of T is an extension of an ideal of D .
- Not every star operation is extendable.
- Finite-type operations are extendable.
- If $*$ is of finite type (respectively, spectral, Noetherian) then so is $*_T$.

Extension as a map

- Let $\text{ExtStar}(D; T)$ be the set of star operations of D that are extendable to T .
- Extension defines a map

$$\begin{aligned}\lambda_{D,T} : \text{ExtStar}(D; T) &\longrightarrow \text{Star}(T) \\ * &\longmapsto *_T.\end{aligned}$$

- $\lambda_{D,T}$ is continuous.
- $\lambda_{D,T}$ is surjective if and only if its image contains the v -operation (on T).
- $\lambda_{D,T}$ is almost never injective.

Restriction of star operations

- The concept dual to extension is **restriction**: if $* \in \text{Star}(T)$, its restriction to D is

$$* \wedge v : I \mapsto (IT)^* \cap I^v.$$

- We can see restriction as a map

$$\rho_{T,D} : \text{Star}(T) \longrightarrow \text{Star}(D)$$

$$* \longmapsto * \wedge v$$

- $\rho_{T,D}$ is continuous.
- Restriction doesn't preserve properties (unless v has them).
- $\rho_{T,D}$ is almost never surjective.

Families of overrings

- It is more useful to work with *families* of overrings:

$$\begin{aligned}\lambda_\Theta: \text{ExtStar}(D; \Theta) &\longrightarrow \prod_{T \in \Theta} \text{Star}(T) \\ * &\longmapsto (*_T)_{T \in \Theta}\end{aligned}$$

where $\text{ExtStar}(D; \Theta) := \bigcap_{T \in \Theta} \text{ExtStar}(D; T)$.

- In the same way, we can define

$$\begin{aligned}\rho_\Theta: \prod_{T \in \Theta} \text{Star}(T) &\longrightarrow \text{Star}(D) \\ (*^{(T)})_{T \in \Theta} &\longmapsto \inf\{\rho_T(*^{(T)}) \mid T \in \Theta\}.\end{aligned}$$

λ_Θ and ρ_Θ

- λ_Θ is continuous.
- If Θ is locally finite, ρ_Θ is continuous.
 - ▶ Θ is *locally finite* (or *of finite character*) if, for every $x \in K$, there are only finitely many $T \in \Theta$ such that $xT \subsetneq T$.
- If Θ is complete, then λ_Θ is injective; if Θ is also locally finite, then λ_Θ is a topological embedding.
 - ▶ Θ is *complete* if $I = \bigcap_{T \in \Theta} IT$ for all $I \in \mathcal{F}(D)$.
- Problems:
 - ▶ What is $\text{ExtStar}(D; \Theta)$?
 - ▶ Is λ_Θ surjective?
- With some hypothesis, we can solve these problems:
 - ▶ Suppose D is Noetherian, integrally closed, locally finite, and that $\dim(D) = 2$: then,

$$\text{Star}(D) \simeq \prod_{M \in \text{Max}(D)} \text{Star}(D_M).$$

- ▶ It is possible to weaken “integrally closed”, but not the other hypothesis.

Jaffard families

Definition

A *Jaffard family* of D is a family $\Theta \subseteq \text{Over}(D)$ of flat overrings such that:

- Θ is complete;
- Θ is locally finite;
- $TS = K$ for every $T, S \in \Theta$, $T \neq S$ (Θ is *independent*).

- The second and the third condition are equivalent to $T \cdot \Theta^\perp(T) = K$, where $\Theta^\perp(T)$ is the intersection of all $S \in \Theta \setminus T$.
- In particular, if $P \in \text{Spec}(D)$, $P \neq (0)$, then there is exactly one $T \in \Theta$ such that $PT \neq T$.
- Jaffard families are in bijective correspondence with particular partitions of $\text{Max}(D)$ (*Matlis partitions*).

Jaffard families (2)

- Jaffard families generalize the concept of h -local domain: indeed, the set $\{D_M \mid M \in \text{Max}(D)\}$ is a Jaffard family if and only if D is h -local.
 - ▶ A domain is h -local if it is locally finite and every prime is contained in only one maximal ideal.
- If $\{X_\alpha\}_{\alpha \in A} \subseteq \mathbf{F}(D)$ and $\bigcap_{\alpha \in A} X_\alpha \neq (0)$, and $T \in \Theta$, then

$$\left(\bigcap_{\alpha \in A} X_\alpha \right) T = \bigcap_{\alpha \in A} X_\alpha T.$$

- If M is a torsion D -module, then

$$M \simeq \bigoplus_{T \in \Theta} M \otimes_D T.$$

- ▶ In particular, if $I \neq (0)$ is an ideal of D , then

$$\frac{D}{I} \simeq \bigoplus_{T \in \Theta} \frac{T}{IT}.$$

The main theorem

Theorem

Let D be an integral domain and Θ be a Jaffard family of D . Then:

- every $* \in \text{Star}(D)$ is extendable to every $T \in \Theta$;
- λ_Θ and ρ_Θ are homeomorphisms between $\text{Star}(D)$ and $\prod_{T \in \Theta} \text{Star}(T)$.

- The same holds if, instead of the set of all star operations, we consider only finite-type, spectral, stable, or Noetherian star operations.
- The theorem does *not* hold for semistar operations.

Consequences of the main theorem

- If $\dim(D) = 1$ and D is locally finite, then

$$\text{Star}(D) \simeq \prod_{M \in \text{Max}(D)} \text{Star}(D_M).$$

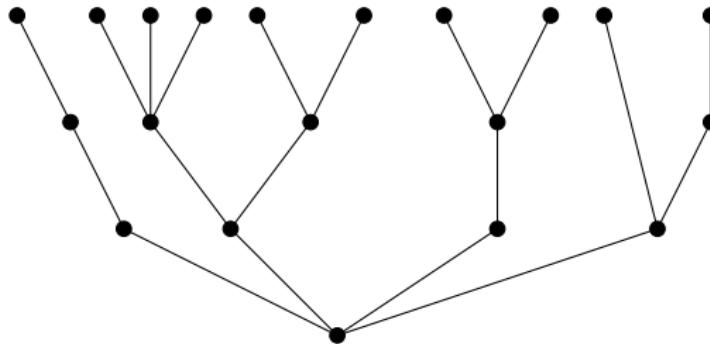
- D has an m -canonical ideal if and only if:
 - ▶ D is h -local;
 - ▶ D_M has an m -canonical ideal for every $M \in \text{Max}(D)$;
 - ▶ $|\text{Star}(D_M)| > 1$ for only finitely many $M \in \text{Max}(D)$.
- If $* \in \text{Star}(D)$, then

$$\frac{\text{Cl}^*(D)}{\text{Pic}(D)} \simeq \bigoplus_{T \in \Theta} \frac{\text{Cl}^{*\tau}(T)}{\text{Pic}(T)}.$$

Prüfer domains

When D is a Prüfer domain, there is a natural candidate for Θ .

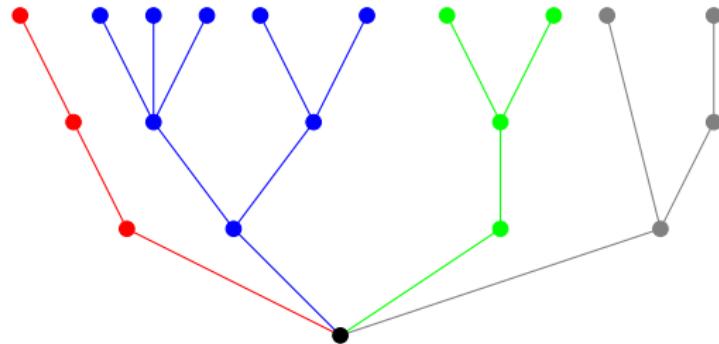
- Say $M, N \in \text{Max}(D)$ are *dependent* if there is a prime ideal $P \neq (0)$ such that $P \subseteq M \cap N$.
- Dependence is an equivalence relation.
- For all $M \in \text{Max}(D)$, define $T(M)$ as the intersection of D_N , as N ranges in the equivalence class of M .
- Take $\Theta := \{T(M) \mid M \in \text{Max}(D)\}$.



Prüfer domains

When D is a Prüfer domain, there is a natural candidate for Θ .

- Say $M, N \in \text{Max}(D)$ are *dependent* if there is a prime ideal $P \neq (0)$ such that $P \subseteq M \cap N$.
- Dependence is an equivalence relation.
- For all $M \in \text{Max}(D)$, define $T(M)$ as the intersection of D_N , as N ranges in the equivalence class of M .
- Take $\Theta := \{T(M) \mid M \in \text{Max}(D)\}$.



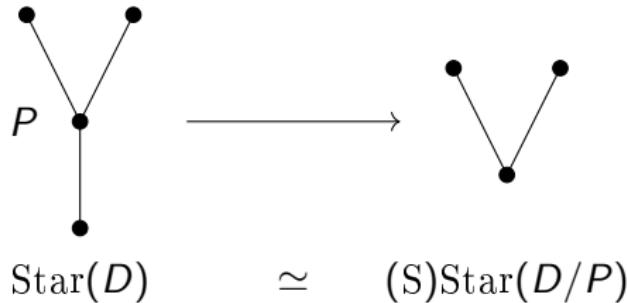
Prüfer domains (2)

- Problem: Θ may not be a Jaffard family.
 - ▶ For example, it may not be locally finite (e.g., an almost Dedekind domain which is not Dedekind).
 - ▶ It works if we restrict to locally finite domains.
- Problem: if T is not a valuation domain, we don't know $\text{Star}(T)$.
 - ▶ Suppose D is semilocal, or locally finite and finite-dimensional.
 - ▶ Then, $\text{Jac}(D)$ contains a prime ideal P .
 - ▶ We want to link $\text{Star}(T)$ and $\text{Star}(T/P)$.

Cutting the branch

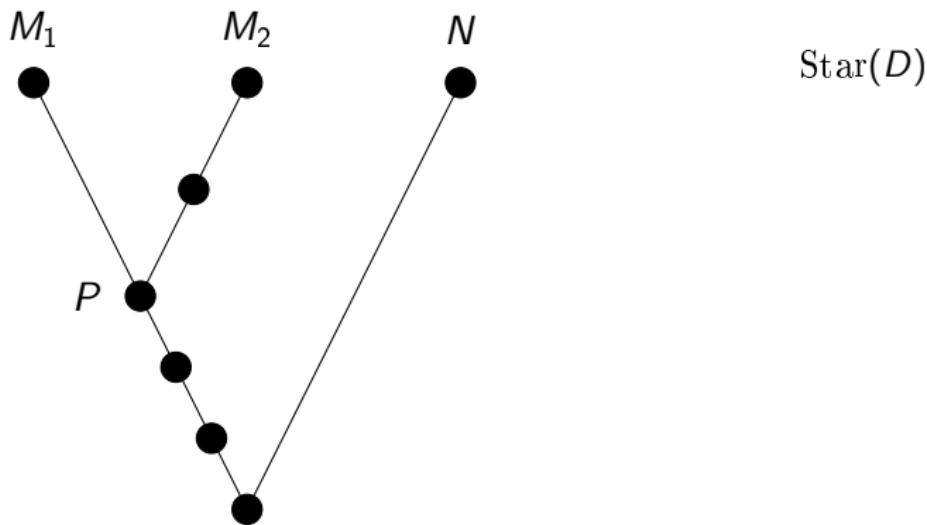
Suppose there is a prime ideal $P \neq (0)$ inside the Jacobson radical.

- $P = PD_P$ (P is divided).
- Every D -submodule of K is a fractional ideal.
- Non-divisorial ideals correspond to D/P -submodules of D_P/P .
- [Fontana and Park, 2004; Houston, Mimouni and Park, 2014] Star operations correspond to semistar operations such that $(D/P)^* = (D/P)$.



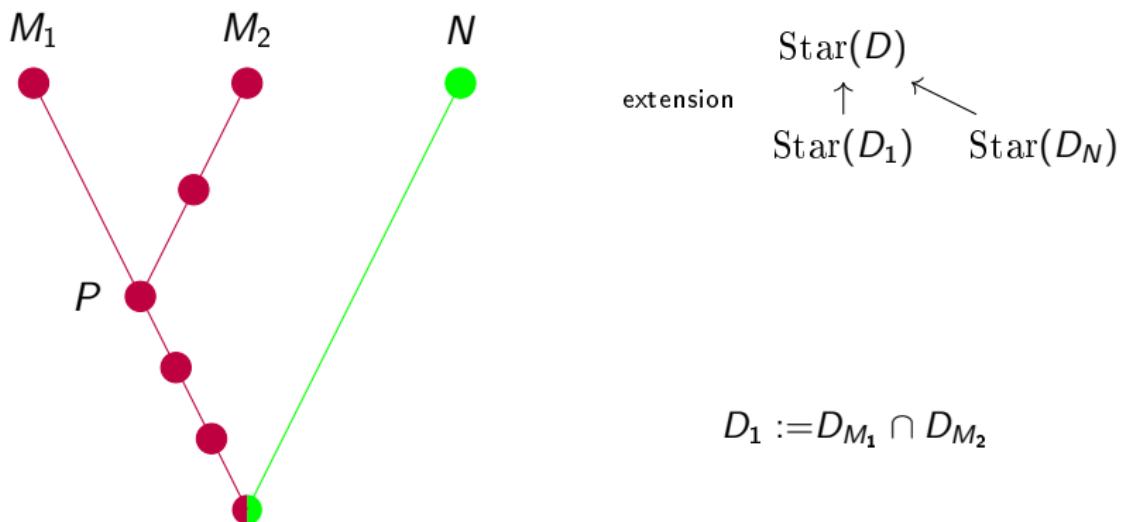
An inductive argument

Suppose we can go from $(S)\text{Star}(R)$ to $\text{Star}(R)$, for every (semilocal) Prüfer domain.



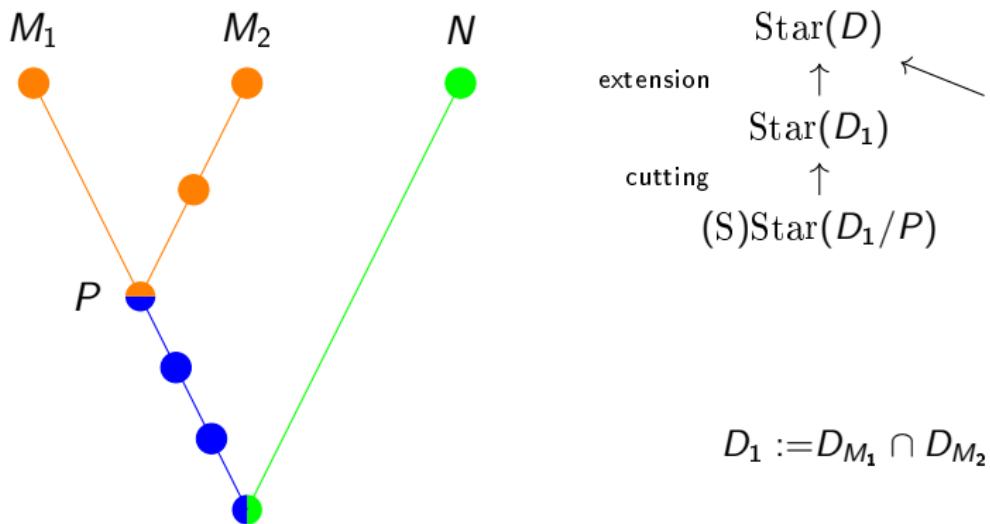
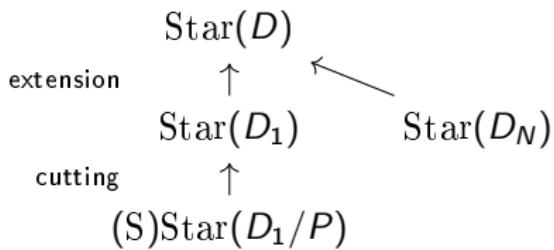
An inductive argument

Suppose we can go from $(S)\text{Star}(R)$ to $\text{Star}(R)$, for every (semilocal) Prüfer domain.



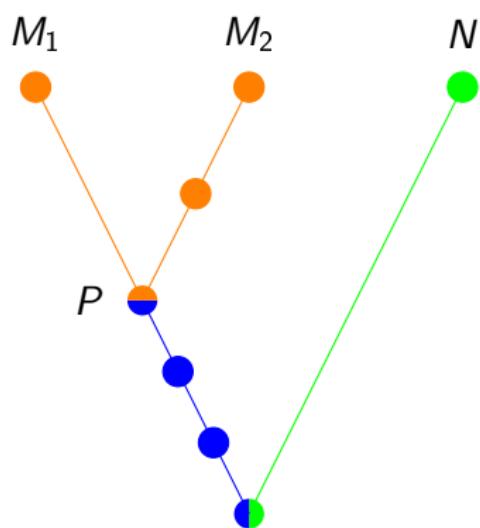
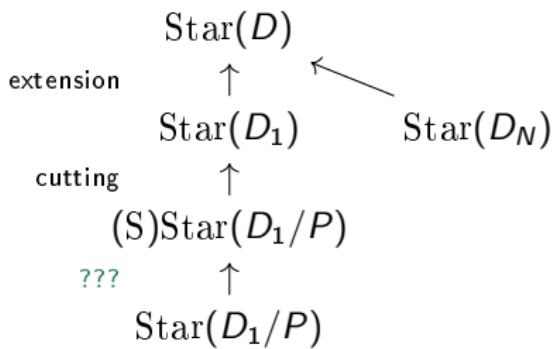
An inductive argument

Suppose we can go from $(S)\text{Star}(R)$ to $\text{Star}(R)$, for every (semilocal) Prüfer domain.



An inductive argument

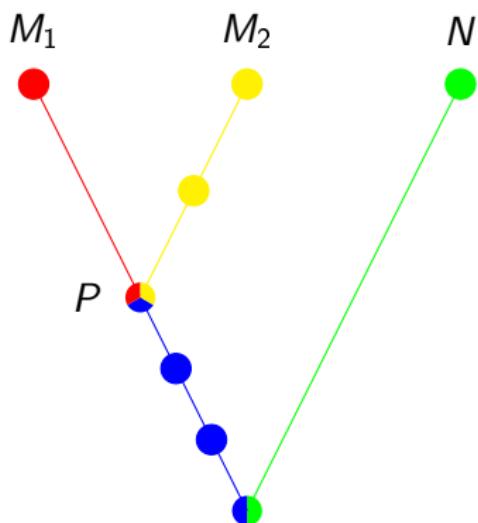
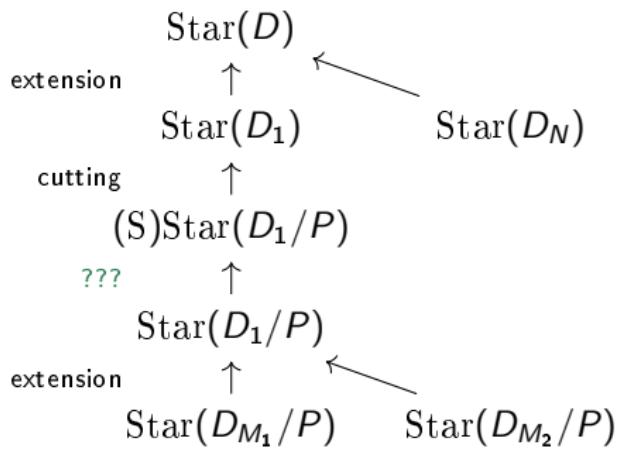
Suppose we can go from $(S)\text{Star}(R)$ to $\text{Star}(R)$, for every (semilocal) Prüfer domain.



$$D_1 := D_{M_1} \cap D_{M_2}$$

An inductive argument

Suppose we can go from $(S)\text{Star}(R)$ to $\text{Star}(R)$, for every (semilocal) Prüfer domain.



$$D_1 := D_{M_1} \cap D_{M_2}$$

Branching points

- Up to the passage $\text{Star}(R) \rightarrow (\text{S})\text{Star}(R)$, the algorithms needs two things:
- the geometry of $\text{Spec}(D)$: we need to know the “branching points” of the spectrum to know the places in which we cut and in which we localize;
- the star operations on D_Q/PD_Q , where $P \subsetneq Q$ are successive branching points of D .
 - ▶ Every D_Q/PD_Q is a valuation domain.
 - ▶ $\text{Star}(D_Q/PD_Q)$ depends only on whether Q is idempotent or not.

Fractional star operations

Star and semistar operations are defined similarly: closure operations on a set of modules satisfying $(xI)^* = x \cdot I^*$.

	$D = D^*$	D^* arbitrary
$\mathcal{F}(D)$	star operations	
$\mathsf{F}(D)$		semistar operations

Fractional star operations

Star and semistar operations are defined similarly: closure operations on a set of modules satisfying $(xI)^* = x \cdot I^*$.

	$D = D^*$	D^* arbitrary
$\mathcal{F}(D)$	star operations	
$\mathsf{F}(D)$	(semi)star operations	semistar operations

Fractional star operations

Star and semistar operations are defined similarly: closure operations on a set of modules satisfying $(xI)^* = x \cdot I^*$.

	$D = D^*$	D^* arbitrary
$\mathcal{F}(D)$	star operations	fractional star operations
$\mathsf{F}(D)$	(semi)star operations	semistar operations

- Fractional star operations satisfy the main theorem.
- We can control the passage from $\mathbf{FStar}(D)$ to $\mathbf{SStar}(D/P)$.

Gluing fractional star operations

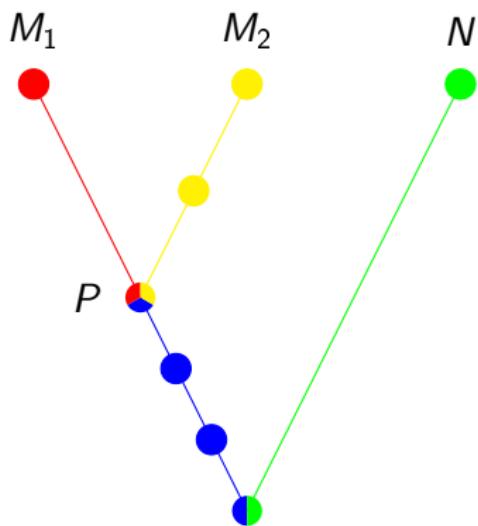
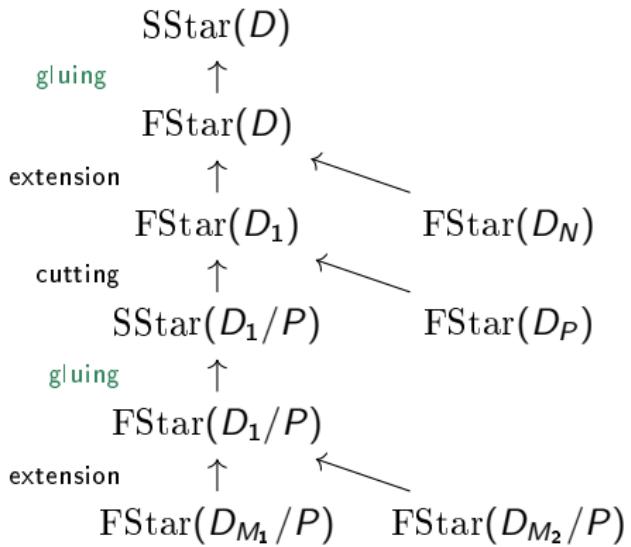
Let D be a semilocal Prüfer domain and let Θ be its Jaffard family.

- There is a (explicit, unique) family $\text{SkOver}(D)$ of overrings such that every D -submodule of K is a fractional ideal over exactly one $U \in \text{SkOver}(D)$.
- $* \in \text{SStar}(D)$ is determined by:
 - ▶ the set Δ_* of $U \in \text{SkOver}(D)$ such that $U^* \in \mathcal{F}(U)$;
 - ▶ $*|_{\mathcal{F}(U)} \in \text{FStar}(U)$, for $U \in \Delta_*$.
- The set of $*$ such that $\Delta_* = \Delta$ is empty or isomorphic to

$$\prod_{T \in \Theta} \text{hom}(\Delta(T), \text{FStar}(T))$$

where $\Delta(T) := \{U \in \text{SkOver}(D) \mid U \subseteq T\}$ and hom are the order-preserving maps.

An inductive argument (2)



$$D_1 := D_{M_1} \cap D_{M_2}$$

Prüfer domains with the same star operations

- For $(S)\text{Star}(D)$ and $\text{Star}(D)$ the reasoning is similar.
 - ▶ Even for them, you still have to use $\text{FStar}(D)$.
- Let D, D' be semilocal Prüfer domains such that:
 - ▶ there is an isomorphism ϕ between the set of the branching points of D and D' ;
 - ▶ $\text{SStar}(D_P) \simeq \text{SStar}(D'_{\phi(P)})$ for all branching points P .

Then, $\text{SStar}(D) \simeq \text{SStar}(D')$.

- ▶ Suppose M is idempotent if and only if $\phi(M)$ is idempotent, for every maximal ideal M . Then, $\text{Star}(D) \simeq \text{Star}(D')$.
- Let D, D' be semilocal Prüfer domains such that:
 - ▶ there is a homeomorphism $\phi : \text{Spec}(D) \longrightarrow \text{Spec}(D')$;
 - ▶ P is idempotent if and only if $\phi(P)$ is idempotent.

Then, $\text{SStar}(D) \simeq \text{SStar}(D')$ and $\text{Star}(D) \simeq \text{Star}(D')$.

Star operations on Prüfer domains

Suppose D is a semilocal Prüfer domain.

- If $\dim(D)$ is finite, so are $\text{Star}(D)$ and $\text{SStar}(D)$.
 - ▶ You can actually calculate the cardinality.
- The set of stable star operations is isomorphic to $\prod_{M \in \text{Max}(D)} \text{Star}(D_M)$.
 - ▶ Equivalently, to the power set of $\{M \in \text{Max}(D) \mid M \neq M^\vee\}$.
 - ▶ D is h -local if and only if every star operation is stable.
- If $I = I^*$ and $J = J^*$ are $*$ -invertible, then so is $I + J$.
 - ▶ L is $*$ -invertible if $(L(D : L))^* = D$.
- For every $* \in \text{Star}(D)$,

$$\text{Cl}^*(D) \simeq \bigoplus_{\substack{M \in \text{Max}(D) \\ M \neq M^*}} \text{Cl}^\vee(D_M)$$

and we know the right hand side: it is (0) or \mathbb{R}/H for some subgroup H depending on the value group of D_M .

Bibliography

- Marco Fontana and Mi Hee Park.
Star operations and pullbacks.
J. Algebra, 274(1):387–421, 2004.
- Evan G. Houston, Abdeslam Mimouni, and Mi Hee Park.
Integrally closed domains with only finitely many star operations.
Comm. Algebra, 42(12):5264–5286, 2014.
- Dario Spirito.
The sets of star and semistar operations on Prüfer domains.
submitted.
- Dario Spirito.
Jaffard families and localizations of star operations.
J. Commut. Algebra, to appear.