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Star operations

e We will always take an integral domain D with quotient field K.
o Let F(D) be the set of D-submodules of K.

o Let F(D) be the set of fractional ideals of D, i.e., of the | € F(D)
such that x/ C D for some x € K.

Definition
A star operation on D is a map * : F(D) — F(D) such that
o | CI*;
o I CJ=I*CJ¥;
o (I*)* = I*.
o (xI)=x-1%

e D*=0D.
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Examples

@ The identity d : [ — I.
e The v-operation v: /(D : (D :1)).

@ The t-operation:

t:l— U{J" | J C I, J is finitely generated}.

o If Y C Over(D) and (¢ T = D, we can define
Ay :le [()IT.
Tey

o If A C Spec(D) and (\pcp Dp = D, we can define

s s ﬂ IDp.
PeA
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Types of closure operations

e x is of finite type if, for every I,
"= U{F* | F C I, Fis finitely generated}

@ x is spectral if it is in the form sa.
@ xisstable if (INJ)*=1"NJ* forall I, J.

@ x is Noetherian if the set
Z*(D):={le F(D)| I CD, I =1}

satisfies the ascending chain condition.
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Structures on Star(D)

@ Order structure: %1 < %o if [** C [*2 for every | € F(D).

» Star(D) is a complete lattice.
> v is the maximum of Star(D).
» tis the maximum of Stars(D).

@ Topological structure: the topology is the one generated by the sets
V)= {x e Star(D) |1 € I"}.

» Starf(D) is better behaved than Star(D).

@ Set structure: study of the cardinality.
» For example, when is Star(D) finite? When |Star(D)| = 17
» There are no general results, but some can be said when D is
Noetherian or when it is integrally closed.
» For example, if D is Noetherian then |Star(D)| =1 if and only if D is
Gorenstein of dimension 1.
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Extensions of star operations

Let D be an integral domain and T a flat overring of D.
Definition
A star operation x on D is extendable to T if the map
x7: F(T) — F(T)
IT— I"T

is well-defined.

Equivalently, x is extendable if IT = JT implies I*T = J*T.

Since T is flat, every ideal of T is an extension of an ideal of D.

°

°

@ Not every star operation is extendable.
@ Finite-type operations are extendable.
°

If  is of finite type (respectively, spectral, Noetherian) then so is * 7.
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Extension as a map

o Let ExtStar(D; T) be the set of star operations of D that are
extendable to T.
o Extension defines a map
Ap,7: ExtStar(D; T) — Star(T)
* — kT,
@ Ap T is continuous.
@ Ap 7 is surjective if and only if its image contains the v-operation (on
T).
@ Ap 1 is almost never injective.
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Restriction of star operations

@ The concept dual to extension is restriction: if x € Star(T), its
restriction to D is
xAv:il— (T NI,

@ We can see restriction as a map

pt,p: Star(T) — Star(D)

¥ —> k AV
@ pr p is continuous.
@ Restriction doesn’t preserve properties (unless v has them).
@ p1.p is almost never surjective.
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Families of overrings

@ It is more useful to work with families of overrings:

Ao ExtStar(D; ©) — [] Stax(T)
Teo
* (*T)TG@

where ExtStar(D; ©) := (1cg ExtStar(D; T).

@ In the same way, we can define

po: H Star(T) — Star(D)
Tco
(M) reo — inf{pr(+(7) | T € ©}.
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)\@ and Lo

Ao Is continuous.
o If © is locally finite, po is continuous.
» O is locally finite (or of finite character) if, for every x € K, there are
only finitely many T € © such that xT C T.
o If © is complete, then A\g is injective; if © is also locally finite, then
Ao is a topological embedding.
» O is complete if | = (.o IT for all | € F(D).
Problems:
» What is ExtStar(D; ©)?
» Is Ao surjective?
o With some hypothesis, we can solve these problems:
» Suppose D is Noetherian, integrally closed, locally finite, and that
dim(D) = 2: then,

Star(D)~ ]  Star(Dm).
MeMax(D)

» It is possible to weaken “integrally closed”, but not the other hypothesis.
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Jaffard families

Definition

A Jaftard family of D is a family © C Over(D) of flat overrings such that:
@ O is complete;
@ O s locally finite;
@ TS=K forevery T,S€©, T #S (© is independent).

o The second and the third condition are equivalent to T -04(T) = K,
where ©4(T) is the intersection of all S€ ©\ T.

@ In particular, if P € Spec(D), P # (0), then there is exactly one
T € © such that PT # T.

o Jaffard families are in bijective correspondence with particular
partitions of Max(D) (Matlis partitions).
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Jaffard families (2)

o Jaffard families generalize the concept of h-local domain: indeed, the
set {Dy | M € Max(D)} is a Jaffard family if and only if D is h-local.
» A domain is h-local if it is locally finite and every prime is contained in
only one maximal ideal.

o If {Xa}aca CF(D)and N, Xa # (0), and T € ©, then

(ﬂ Xa> T=[)XT.

a€cA a€A

o If M is a torsion D-module, then

M:@M@D T.
Teo

> In particular, if / # (0) is an ideal of D, then
D T
ba@r
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The main theorem

Theorem
Let D be an integral domain and © be a Jaffard family of D. Then:
e every x € Star(D) is extendable to every T € ©;

® \o and pg are homeomorphisms between Star(D) and H Star(T).
TecO

@ The same holds if, instead of the set of all star operations, we consider
only finite-type, spectral, stable, or Noetherian star operations.

@ The theorem does not hold for semistar operations.
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Consequences of the main theorem

e If dim(D) =1 and D is locally finite, then

Star(D) ~ H Star(Dpu).
MeMax(D)

@ D has an m-canonical ideal if and only if:
» D is h-local;
» Dy has an m-canonical ideal for every M € Max(D);
> |Star(Dp)| > 1 for only finitely many M € Max(D).

o If x € Star(D), then

CI*(D) _ ® CI*7(T)

Pi¢(D) — 126 Pic(T)
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Priifer domains

When D is a Priifer domain, there is a natural candidate for ©.

e Say M, N € Max(D) are dependent if there is a prime ideal P # (0)
such that PC M N N.

@ Dependence is an equivalence relation.

e For all M € Max(D), define T(M) as the intersection of Dy, as N
ranges in the equivalence class of M.

o Take © :={T(M) | M € Max(D)}.
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Prifer domains (2)

@ Problem: © may not be a Jaffard family.
» For example, it may not be locally finite (e.g., an almost Dedekind
domain which is not Dedekind).
» It works if we restrict to locally finite domains.
@ Problem: if T is not a valuation domain, we don’t know Star(T).

» Suppose D is semilocal, or locally finite and finite-dimensional.
» Then, Jac(D) contains a prime ideal P.
» We want to link Star(T) and Star(T/P).
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Cutting the branch

Suppose there is a prime ideal P # (0) inside the Jacobson radical.
o P = PDp (P is divided).
@ Every D-submodule of K is a fractional ideal.
e Non-divisorial ideals correspond to D/P-submodules of Dp/P.

e [Fontana and Park, 2004; Houston, Mimouni and Park, 2014] Star
operations correspond to semistar operations such that

(D/P)* = (D/P).

ey

Star(D) ~ (S)Star(D/P)

2
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An inductive argument

Suppose we can go from (S)Star(R) to Star(R), for every (semilocal)
Priifer domain.

My M, N
Star(D)
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An inductive argument

Suppose we can go from (S)Star(R) to Star(R), for every (semilocal)
Priifer domain.

M M-

N Star(D)
® extension T ‘\
Star(Dl) Star(DN)
P

D; Z:DM1 N D/\//2
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An inductive argument

Suppose we can go from (S)Star(R) to Star(R), for every (semilocal)
Priifer domain.

M Mo N Star(D)
extension T \
Star(Dy) Star(Dp)

cutting T
(S)Star(D1/P)
P
Dy Z:DM1 n D/\/[2
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An inductive argument

Suppose we can go from (S)Star(R) to Star(R), for every (semilocal)
Priifer domain.

Star(D
M M N extension T( ) ‘\
Star(Dy) Star(Dy)
cutting T
(S)Star(D1/P)
777 T
P Star(Dy /P)
Dy —DM1 n DM2
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An inductive argument

Suppose we can go from (S)Star(R) to Star(R), for every (semilocal)
Priifer domain.

Star(D)
Ml M2 N extension T \
Star(Dl) Star(DN)
cutting T
(S)Star(Dy /P)
777 T
p Star(Dy/P)

extension T \
Star(Dp, /P)  Star(Dm,/P)

Dy :=Dpy, N Dy,
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Branching points

e Up to the passage Star(R) — (S)Star(R), the algorithms needs two
things:

@ the geometry of Spec(D): we need to know the “branching points” of
the spectrum to know the places in which we cut and in which we
localize;

o the star operations on Dg/PDg, where P C @ are successive
branching points of D.

» Every Dg/PDg is a valuation domain.
» Star(Dg/PDg) depends only on whether Q is idempotent or not.
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Fractional star operations

Star and semistar operations are defined similarly: closure operations on a
set of modules satisfying (x/)* = x - I*.

D = D* D* arbitrary

star
operations

F(D) semistar

operations
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Fractional star operations

Star and semistar operations are defined similarly: closure operations on a
set of modules satisfying (x/)* = x - I*.

D = D* D* arbitrary

star
F(D) operations
semi)star semistar
F(p) | (sem) .
operations operations
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Fractional star operations

Star and semistar operations are defined similarly: closure operations on a
set of modules satisfying (x/)* = x - I*.

D = D* D* arbitrary

star fractional star
F(D) operations ti : : :
P operations o Fractional star operations satisfy
the main theorem.
@ We can control the passage from
_ FStar(D) to SStar(D/P).
F(D) (semi)star semistar
operations operations
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Gluing fractional star operations

Let D be a semilocal Priifer domain and let © be its Jaffard family.

@ There is a (explicit, unique) family SkOver(D) of overrings such that
every D-submodule of K is a fractional ideal over exactly one
U € SkOver(D).

e x € SStar(D) is determined by:

> the set A, of U € SkOver(D) such that U* € F(U);
> | ru) € FStar(U), for U € A,.

@ The set of x such that A, = A is empty or isomorphic to

H hom(A(T),FStar(T))

Teo

where A(T) :={U € SkOver(D) | U C T} and hom are the
order-preserving maps.
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An inductive argument (2)

SStar(D)
gluing T
FStar(D)
extension T \

FStar(Dl) FStar(DN)

cutting T \
SStar(Dl/P) FStar(Dp)

P gluing T
FStar(Ds/P)
extension T \
FStar(Dm,/P)  FStar(Dm,/P)

o=

Dy Z:D/\//1 N DM2
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Priifer domains with the same star operations

e For (S)Star(D) and Star(D) the reasoning is similar.
» Even for them, you still have to use FStar(D).
@ Let D, D’ be semilocal Priifer domains such that:
» there is an isomorphism ¢ between the set of the branching points of D
and D’;
> SStar(Dp) ~ SStar(Djp,) for all branching points P.
Then, SStar(D) ~ SStar(D’).
» Suppose M is idempotent if and only if ¢(M) is idempotent, for every
maximal ideal M. Then, Star(D) ~ Star(D’).
@ Let D, D’ be semilocal Priifer domains such that:
» there is a homeomorphism ¢ : Spec(D) — Spec(D’);
» P is idempotent if and only if ¢(P) is idempotent.
Then, SStar(D) ~ SStar(D’) and Star(D) ~ Star(D’).
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Star operations on Priifer domains

Suppose D is a semilocal Priifer domain.
e If dim(D) is finite, so are Star(D) and SStar(D).
» You can actually calculate the cardinality.
@ The set of stable star operations is isomorphic to H Star(Dp).
MeMax(D)

» Equivalently, to the power set of {M € Max(D) | M # M"}.
» D is h-local if and only if every star operation is stable.
o If | = /1* and J = J* are x-invertible, then so is | + J.
» L is s-invertible if (L(D : L))* = D.
e For every x € Star(D),
(D)~ € C1Y(Dum)

MeMax(D)
M=£M*

and we know the right hand side: it is (0) or R/H for some subgroup
H depending on the value group of Dy.
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