

Non-unique factorizations in bounded hereditary noetherian prime rings

Daniel Smertnig

University of Waterloo

Conference on Rings and Factorizations
Graz, Feb 21, 2018

Outline

- Factorizations in noncommutative rings
- Non-unique factorizations
- Bounded hereditary noetherian prime (HNP) rings
- Beyond bounded HNP rings

Factorizations

R (unital) ring, $H = R^\bullet$ its monoid of non-zero-divisors.

Assume: R^\bullet is divisor-closed in R .

- A non-unit $u \in H$ is an **atom** if

$$u = ab \text{ with } a, b \in H \Rightarrow a \in H^\times \text{ or } b \in H^\times.$$

- $\mathcal{A}(H)$... set of all atoms.

Definition

H is **atomic** if for every $a \in H \setminus H^\times$, there exist atoms u_1, \dots, u_k , such that

$$a = u_1 \cdots u_k.$$

Factorizations

Question

What is a factorization, precisely?

First attempt: an element of $\mathcal{F}^*(\mathcal{A}(H))$... free monoid on atoms.

Two problems:

- 1 In H , we have $uv = (u\varepsilon)(\varepsilon^{-1}v)$ for $\varepsilon \in H^\times$
- 2 Units should have a trivial factorization.

Note: Cannot reduce H/H^\times in general.

Factorizations

On $H^\times \times \mathcal{F}^*(\mathcal{A}(H))$ define $(\varepsilon, u_1 * \dots * u_k) \sim (\eta, v_1 * \dots * v_l)$ if

- 1 $\varepsilon u_1 \cdots u_k = \eta v_1 \cdots v_l$ in H ,
- 2 $k = l$, and
- 3 there exist $\delta_i \in H^\times$ s.t.

$$\varepsilon u_1 = \eta v_1 \delta_1, \quad u_i = \delta_{i-1}^{-1} v_i \delta_i, \quad u_k = \delta_{k-1}^{-1} v_k.$$

Definition

$Z^*(H) = (H^\times \times \mathcal{F}^*(\mathcal{A}(H))) / \sim$ is the **monoid of (rigid) factorizations**.

- There is a homomorphism $\pi: Z^*(H) \rightarrow H$
- $Z^*(a) = \pi^{-1}(\{a\})$ is the set of **(rigid) factorizations of a** .

Factor posets

The **Factor poset** is

$$[aR, R] = \{bR \mid b \in R^\bullet, aR \subseteq bR \subseteq R\}$$

Then

$$Z^*(a) \longleftrightarrow \text{maximal, finite chains in } [aR, R].$$

$u_1 * \dots * u_k$ corresponds to

$$R \supsetneq u_1 R \supsetneq u_1 u_2 R \supsetneq \dots \supsetneq u_1 \dots u_k R = aR.$$

ACCP \Rightarrow atomic

By taking cofactors, ACC on the left implies DCC on $[aR, R]!$

Lemma

If R satisfies ACCP, that is ACC on principal left and right ideals, then R^\bullet is atomic.

Note: ACC on one side is not sufficient.

Similarity factoriality

Question

What should it mean for R to be factorial?

Suppose R is atomic, and if $bR, cR \in [aR, R]$ then $bR + cR$ and $bR \cap cR$ are principal (e.g., R a PID).

$\Rightarrow [aR, R]$ is a finite length modular lattice

\Rightarrow If $u_1 * \dots * u_k, v_1 * \dots * v_l \in Z^*(a)$, then

- $k = l$, and
- there exists a permutation σ s.t. $R/u_i R \cong R/v_{\sigma(i)} R$.

We say R is **similarity factorial**.

Remark

- $[aR, R]$ need not be distributive, e.g., $R = M_2(\mathbb{Z})$.
- $K\langle x, y \rangle$ has distributive factor lattices, but all finite distributive lattices appear as factor lattices.
- $\mathbb{Z}\langle x, y \rangle$ is not similarity factorial (but subsimilarity factorial).
- Let \mathbb{H} be the \mathbb{Q} -division algebra of Hamilton quaternions. Then $\mathbb{H}[x]$ is Euclidean (\Rightarrow PID), but $\mathbb{H}[x, y]$ is not half-factorial!

Non-unique factorizations

Arithmetical Invariants

Definition

Let $a \in R^\bullet$. The **set of lengths** of a is

$$\begin{aligned} L(a) &= \{ |z| \mid z \in Z^*(a) \} \\ &= \{ k \in \mathbb{N}_0 \mid a = u_1 \cdots u_k \text{ with } u_1, \dots, u_k \in R^\bullet \text{ atoms} \}. \end{aligned}$$

System of sets of lengths: $\mathcal{L}(R) = \{ L(a) \mid a \in R^\bullet \}$.

- R is **half-factorial** if $|L(a)| = 1$ for all $a \in R^\bullet$.
- $|L(a)| \geq 2 \Rightarrow |L(a^n)| \geq n + 1$.
- **Elasticity:**

$$\rho(a) = \frac{\sup L(a)}{\min L(a)} \in \mathbb{Q}_{\geq 1} \cup \{\infty\},$$

$$\rho(R) = \sup\{ \rho(a) \mid a \in R^\bullet \} \in \mathbb{R}_{\geq 1} \cup \{\infty\}.$$

Distances

Let $D = \{ (z, z') \in Z^*(H) \times Z^*(H) : \pi(z) = \pi(z') \}.$

Definition

A **distance on R^\bullet** is a map $d: D \rightarrow \mathbb{N}_0$ s.t.

- 1 $d(z, z) = 0$
- 2 $d(z, z') = d(z', z)$
- 3 $d(z, z') \leq d(z, z'') + d(z'', z')$
- 4 $d(x * z, x * z') = d(z, z') = d(z * x, z' * x)$
- 5 $||z| - |z'|| \leq d(z, z') \leq \max\{|z|, |z'|, 1\}.$

E.g. d_{sim} , compare factors up to similarity, ...

Catenary degrees

Fix a distance d ; let $z, z' \in Z^*(a)$.

An **N -chain** is a sequence $z = z_0, z_1, \dots, z_l = z'$ in $Z^*(a)$, such that

$$d(z_{i-1}, z_i) \leq N \quad \text{for } i \in [1, l].$$

Definition

The **catenary degree** $c_d(a)$ is the smallest N such that for all $z, z' \in Z^*(a)$, there exists an N -chain between z and z' .

$$c_d(H) = \sup \{ c_d(a) \mid a \in H \}.$$

Transfer homomorphisms

Definition

Let H, T be cancellative monoids, $T^\times = \{1\}$. A homomorphism $\theta: H \rightarrow T$ is a **transfer homomorphism** if

- 1 $\theta(H) = T$ and $\theta^{-1}(\{1\}) = H^\times$.
- 2 Whenever $\theta(a) = st$, there exist $b, c \in H$ such that

$$a = bc, \quad \theta(b) = s, \quad \text{and} \quad \theta(c) = t.$$

Transfer homomorphisms

Theorem

If $\theta: H \rightarrow T$ is a transfer homomorphism, it induces a homomorphism θ^* ,

$$\begin{array}{ccc} Z^*(H) & \xrightarrow{\theta^*} & Z^*(T) \\ \downarrow & & \downarrow \\ H & \xrightarrow{\theta} & T, \end{array}$$

with $\theta^*(Z^*(a)) = Z^*(\theta(a))$.

- $\mathcal{L}(H) = \mathcal{L}(T)$.
- If T is commutative

$$c_d(H) \leq \max\{c_p(T), c(\theta)\}.$$

Monoid of zero-sum sequences

Let $(G, +)$ be an abelian group, $G_0 \subseteq G$, $(\mathcal{F}(G_0), \cdot)$ the free abelian monoid with basis G_0 .

- $S = g_1 \cdots g_l \in \mathcal{F}(G_0)$ is called a **sequence** (formal product!).
- $\sigma(S) = g_1 + \cdots + g_l \in G$ is its sum.
- S is a **zero-sum sequence** if $\sigma(S) = 0$.

Definition

The submonoid

$$\mathcal{B}(G_0) = \{ S \in \mathcal{F}(G_0) \mid \sigma(S) = 0_G \} \subset \mathcal{F}(G_0)$$

is the **monoid of zero-sum sequences** over G_0 .

If G_0 is finite, then $\mathcal{B}(G_0)$ is a finitely generated Krull monoid (finitely many atoms, arithmetical invariants finite, ...)

Reminder: Commutative Dedekind domains

Theorem

Let R be a commutative Dedekind domain, $(G, +)$ its class group,

$$G_0 = \{ [\mathfrak{p}] \mid \mathfrak{p} \in \text{spec}(R) \}.$$

There is a transfer homomorphism $\theta: R^\bullet \rightarrow \mathcal{B}(G_0)$:

$$\begin{array}{ccc} a & \longmapsto & aR \\ R^\bullet & \longrightarrow & \mathcal{F}(\text{spec}(R)) & \mathfrak{p}_1 \cdots \mathfrak{p}_r \\ \downarrow \theta & & \downarrow & \downarrow \\ \mathcal{B}(G_0) & \longmapsto & \mathcal{F}(G_0) & [\mathfrak{p}_1] \cdots [\mathfrak{p}_r] \end{array}$$

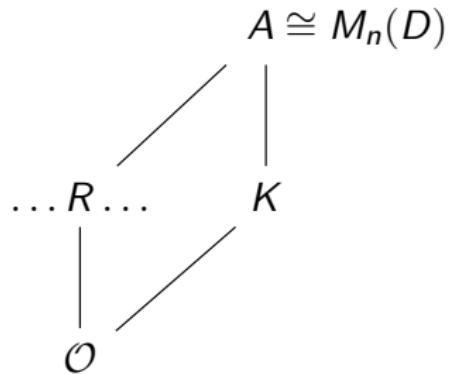
Moreover, $c(\theta) \leq 2$.

Hereditary noetherian prime (HNP) rings

Hereditary orders

Let

- K be a number field,
- \mathcal{O} its ring of algebraic integers,
- A a central simple K -algebra,
- $\mathcal{O} \subset R \subset A$ an order in A
(subring, $R_{\mathcal{O}}$ finitely generated,
 $KR = A$).



Definition

- R is a **maximal order** if it is not contained in a strictly larger order.
- Maximal orders are **hereditary** (right ideals are projective).

Examples...

- Hurwitz quaternions

$$\mathbb{Z} \left[1, i, j, \frac{1+i+j+k}{2} \right]$$

with $i^2 = j^2 = k^2 = -1$, $ij = -ji = k$.

- With p a prime,

$$\begin{bmatrix} \mathbb{Z} & p\mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{bmatrix}.$$

- (Noncommutative) **hereditary noetherian prime (HNP) rings** are analogues of commutative Dedekind domains.
- Structure theory for f. g. projective modules and for finite-length modules (Levy–Robson 2011).
- Examples:
 - Hereditary orders over commutative Dedekind domains.
 - Endomorphism rings of f. g. projective modules over Dedekind domains.
 - Some skew polynomial rings over commutative Dedekind domains, e.g.,

$$A = A_1(K) = K[y][x; \frac{d}{dy}], \quad K[x^{\pm 1}][y^{\pm 1}; \sigma] \text{ with } yx = qxy.$$

- R is **right bounded**, if for every $a \in R^\bullet$, there exists a nonzero ideal $I \subseteq R$ with $I \subseteq aR$.

From factor lattices to modules

$$Z^*(a) \longleftrightarrow [aR, R] \longleftrightarrow ? \ R/aR.$$

How to go from R/aR back to $[aR, R]$?

Commutative: $\text{ann}(R/I) = I$; if R is a Dedekind domain:

$$R / \prod_{i=1}^r \mathfrak{p}_i^{e_i} \cong \bigoplus_{i=1}^r R / \mathfrak{p}_i^{e_i}.$$

Noncommutative: $R/aR \cong R/I \Rightarrow ?$

$$\begin{array}{ccccccc} 0 & \longrightarrow & I & \longrightarrow & R & \longrightarrow & R/aR \longrightarrow 0 \\ & & \parallel & & \parallel & & \\ 0 & \longrightarrow & aR & \longrightarrow & R & \longrightarrow & R/aR \longrightarrow 0 \end{array}$$

$$\Rightarrow I \oplus R \cong aR \oplus R. \quad I \text{ is \textbf{stably free}.}$$

Problem!

There can be non-principal, stably free right ideals I .

Hermite rings

Definition

R is a **(right) Hermite ring** if every stably free right R -module is free.

- Commutative Dedekind domains are Hermite.
- HNP rings R with $\text{udim } R \geq 2$ are Hermite.
- Indefinite hereditary orders over rings of algebraic integers are Hermite (by **strong approximation**).
- Definite (quaternion) orders over rings of algebraic integers are **usually not** Hermite.
- $A_1(K)$ is not Hermite.

Modules over HNP rings

Let V, W be simple modules.

Definition

W is a **successor** of V if $\text{Ext}_R^1(V, W) \neq 0$.

Isomorphism classes of simple modules are organized into **cycle towers** and **faithful towers**.

W_1, \dots, W_n pairwise non-isomorphic simple modules.

- **Cycle tower:** All W_i are unfaithful. W_{i+1} is a successor of W_i , and W_1 is a successor of W_n .
- **Faithful tower:** W_1 is faithful, W_2, \dots, W_n are unfaithful. W_i is a successor of W_{i-1} , and W_n has no unfaithful successor.

In a bounded HNP ring, all simple modules are unfaithful.

Modules over HNP rings

If $a \in R^\bullet$, then R/aR has finite length.

If R is bounded, every finite length module M is a direct sum of **uniserial** modules,

$$M \cong U_1 \oplus \cdots \oplus U_n.$$

The composition factors of U_i form a slice of a repetition of the modules of a cycle tower T .

A class group

$\mathcal{S}(R)$... isomorphism classes of simple modules.

$\mathcal{T}(R) \subset \mathcal{F}(\mathcal{S}(R))$... towers (as sums of their simple modules),

$$K_0 \mathbf{mod}_{\text{fl}}(R) = \mathbf{q}\mathcal{F}(\mathcal{S}(R)) \supseteq \mathbf{q}\mathcal{F}(\mathcal{T}(R))$$

For M a module of finite length with composition factors W_1, \dots, W_n , have

$$(M) = (W_1) + \dots + (W_n) \in \mathcal{F}(\mathcal{S}(R)).$$

Proposition

If $a \in R^\bullet$, then $(R/aR) \in \mathcal{F}(\mathcal{T}(R))$

A class group

Set $\mathcal{P}(R) = \{ (R/aR) \mid a \in R^\bullet \} \subseteq \mathcal{F}(\mathcal{T}(R))$.

Definition

The **class group** of R is

$$\mathcal{C}(R) = \mathbf{q}\mathcal{F}(\mathcal{T}(R)) / \langle \mathcal{P}(R) \rangle.$$

Set $\mathcal{C}_{\max}(R) = \{ [T] \in \mathcal{C}(R) \mid T \in \mathcal{T}(R) \}$.

- $\mathcal{C}(R) \cong G(R) = \ker(\Psi^+)$.
- $\mathcal{C}(R)$ and $\mathcal{C}_{\max}(R)$ are Morita invariant.

Main result for HNP rings

Theorem

Let R be a bounded HNP ring. Suppose R is a Hermite ring.

- $\mathcal{P}(R) = \{ (R/aR) \mid a \in R^\bullet \}$ is a commutative Krull monoid, and $\mathcal{P}(R) \rightarrow \mathcal{F}(\mathcal{T}(R))$ is a cofinal divisor homomorphism.
- There exists a transfer homomorphism

$$\theta: R^\bullet \rightarrow \mathcal{P}(R),$$

and a transfer homomorphism to the monoid of zero-sum sequences

$$\bar{\theta}: R^\bullet \rightarrow \mathcal{B}(\mathcal{C}_{\max}(R)).$$

- $c_d(\theta) \leq 2$ and $c_d(\bar{\theta}) \leq 2$.

Hereditary orders

Theorem

Let R be a hereditary order over a ring of algebraic integers \mathcal{O} . Then $\mathcal{C}(R) \cong \mathcal{C}_A(\mathcal{O})$ is a ray class group of \mathcal{O} , hence finite, and $\mathcal{C}_{\max}(R) = \mathcal{C}(R)$.

- 1 If R is a Hermite ring, there exists a transfer homomorphism to $\mathcal{B}(\mathcal{C}_A(\mathcal{O}))$, all arithmetical invariants are finite.
- 2 If R is maximal and **not** Hermite, then $\rho(R^\bullet) = \infty$, $\Delta(R^\bullet) = \mathbb{N}, \dots$

Remark

(1) is the usual case; (2) only happens in definite quaternion algebras.

A corollary

Corollary

Let R be a bounded Hermite HNP ring. Suppose further that $\mathcal{C}_{\max}(R) = \mathcal{C}(R)$, and that, if $\mathcal{C}(R) \cong C_2$, there exist at least two distinct towers T_1 and T_2 with $\langle T_1 \rangle = \langle T_2 \rangle \neq \mathbf{0}$. Then

- 1 R^\bullet is composition series factorial if and only if $\mathcal{C}(R) = \mathbf{0}$. Otherwise, $c_{\text{cs}}(R^\bullet) \geq 2$.
- 2 R^\bullet is similarity factorial if and only if R is a principal ideal ring. Otherwise, $c_{\text{sim}}(R^\bullet) \geq 2$.
- 3 R^\bullet is rigidly factorial if and only if R is a local principal ideal ring. Otherwise, $c^*(R^\bullet) \geq 2$.

Beyond boundedness: The Weyl algebra

Let K be a field, $\text{char}(K) = 0$,

$$A = K[y][x; \frac{d}{dy}] = K\langle x, y \rangle / \langle xy - yx - 1 \rangle.$$

A is

- a simple HNP ring, all towers are trivial, $\mathcal{C}(A) = 0$
- **not** Hermite.
- not half-factorial,

$$x^2y = (1 + xy)x$$

$$\Rightarrow \rho(A^\bullet) \geq 3/2, \text{ in fact } \rho(A^\bullet) = \infty.$$

- $M_2(A)$ is a prime PIR, in particular Hermite, similarity factorial.

$$\begin{bmatrix} 1 + xy & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} x^2 & 1 + xy \\ x & y \end{bmatrix} \begin{bmatrix} -y^2 & y \\ xy + 1 & -x \end{bmatrix}.$$

Beyond boundedness

We can still rescue the conclusions of the main theorem as long as

- faithful towers are trivial,
- $\text{Ext}_R^1(V, W) = 0$ if V, W are faithful simple modules in different classes of $\mathcal{C}(R)$.

Let $R = \mathbf{I}_A(xA) = K + xA$ be the idealizer of the maximal right A -ideal xA .

- R has a single faithful tower of length 2: $A/R, R/xA$.
- $\mathcal{C}(R) = 0$, all other towers of R are trivial & faithful.
- Same is true for $M_2(R)$ and it is Hermite, but not half-factorial.

For

$$a = \begin{bmatrix} x(x-y)(x-yx) & x(x-y)(-xy+xy^2) \\ x^2 - (1+xy)x & (1+xy)(1-x) + x^2y^2 \end{bmatrix}$$

we have

$$\begin{aligned} a &= \underbrace{\begin{bmatrix} x(x-y) & 0 \\ 0 & 1 \end{bmatrix}}_{u_1} \underbrace{\begin{bmatrix} x-yx & -xy+xy^2 \\ x^2 - (1+xy)x & (1+xy)(1-x) + x^2y^2 \end{bmatrix}}_{u_2} \\ &= \underbrace{\begin{bmatrix} x & xy \\ x & 1+xy \end{bmatrix}}_{w_1} \underbrace{\begin{bmatrix} -xy^2 + x^2y - xy - x + 1 & -xy^3 + x^2y^2 - xy^2 - xy \\ xy - x^2 + x & xy^2 - x^2y + xy + 1 \end{bmatrix}}_{w_2} \underbrace{\begin{bmatrix} x & -xy \\ -x & 1+xy \end{bmatrix}}_{w_3} \end{aligned}$$

Non-hereditary orders

Non-uniqueness of factorizations in orders due to: non-trivial class group, non-Hermite, local obstructions.

Theorem

Let K be the quotient field of a DVR, let A be a quaternion algebra over K , and let R be a **non-hereditary** order in A . Then

$$\rho(R^\bullet) < \infty \iff \widehat{A} \text{ is a division ring.}$$