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Factorizations

R (unital) ring, H = R• its monoid of non-zero-divisors.

Assume: R• is divisor-closed in R .

A non-unit u ∈ H is an atom if

u = ab with a, b ∈ H ⇒ a ∈ H× or b ∈ H×.

A(H) ... set of all atoms.

Definition
H is atomic if for every a ∈ H \ H×, there exist atoms u1, . . ., uk ,
such that

a = u1 · · · uk .



Factorizations

Question
What is a factorization, precisely?

First attempt: an element of F∗(A(H)) ... free monoid on atoms.

Two problems:
1 In H, we have uv = (uε)(ε−1v) for ε ∈ H×

2 Units should have a trivial factorization.

Note: Cannot reduce H/H× in general.



Factorizations

On H× ×F∗(A(H)) define (ε, u1 ∗ · · · ∗ uk) ∼ (η, v1 ∗ · · · ∗ vl) if
1 εu1 · · · uk = ηv1 · · · vl in H,
2 k = l , and
3 there exist δi ∈ H× s.t.

εu1 = ηv1δ1, ui = δ−1
i−1viδi , uk = δ−1

k−1vk .

Definition
Z∗(H) =

(
H× ×F∗(A(H))

)
/ ∼ is the monoid of (rigid)

factorizations.
There is a homomorphism π : Z∗(H)→ H
Z∗(a) = π−1({a}) is the set of (rigid) factorizations of a.



Factor posets

The Factor poset is

[aR ,R ] = {bR | b ∈ R•, aR ⊆ bR ⊆ R }

Then

Z∗(a) ←→ maximal, finite chains in [aR ,R ].

u1 ∗ · · · ∗ uk corresponds to

R ) u1R ) u1u2R ) · · · ) u1 · · · ukR = aR .



ACCP⇒ atomic

By taking cofactors, ACC on the left implies DCC on [aR ,R ]!

Lemma
If R satisfies ACCP, that is ACC on principal left and right ideals,
then R• is atomic.

Note: ACC on one side is not sufficient.



Similiarity factoriality

Question
What should it mean for R to be factorial?

Suppose R is atomic, and if bR , cR ∈ [aR ,R ] then bR + cR and
bR ∩ cR are principal (e.g., R a PID).

⇒ [aR ,R ] is a finite length modular lattice

⇒ If u1 ∗ · · · ∗ uk , v1 ∗ · · · ∗ vl ∈ Z∗(a), then
k = l , and
there exists a permutation σ s.t. R/uiR ∼= R/vσ(i)R .

We say R is similarity factorial.



Limitations...

Remark

[aR ,R ] need not be distributive, e.g., R = M2(Z).
K〈x , y〉 has distributive factor lattices, but all finite
distributive lattices appear as factor lattices.
Z〈x , y〉 is not similarity factorial (but subsimilarity factorial).
Let H be the Q-division algebra of Hamilton quaternions.
Then H[x ] is Euclidean (⇒ PID), but H[x , y ] is not
half-factorial!



Non-unique factorizations



Arithmetical Invariants

Definition
Let a ∈ R•. The set of lengths of a is

L(a) = { |z| | z ∈ Z∗(a) }
= { k ∈ N0 | a = u1 · · · uk with u1, . . . , uk ∈ R• atoms }.

System of sets of lengths: L(R) = { L(a) | a ∈ R• }.

R is half-factorial if |L(a)| = 1 for all a ∈ R•.
|L(a)| ≥ 2 ⇒ |L(an)| ≥ n + 1.
Elasticity:

ρ(a) = sup L(a)
min L(a) ∈ Q≥1 ∪ {∞},

ρ(R) = sup{ ρ(a) | a ∈ R• } ∈ R≥1 ∪ {∞}.



Distances

Let D = { (z, z ′) ∈ Z∗(H)× Z∗(H) : π(z) = π(z ′) }.

Definition
A distance on R• is a map d : D → N0 s.t.

1 d(z, z) = 0

2 d(z, z ′) = d(z ′, z)
3 d(z, z ′) ≤ d(z, z ′′) + d(z ′′, z ′)
4 d(x ∗ z, x ∗ z ′) = d(z, z ′) = d(z ∗ x , z ′ ∗ x)
5 ||z| − |z ′|| ≤ d(z, z ′) ≤ max{|z|, |z ′|, 1}.

E.g. dsim, compare factors up to similarity, ...



Catenary degrees

Fix a distance d; let z, z ′ ∈ Z∗(a).
An N-chain is a sequence z = z0, z1, . . . , zl = z ′ in Z∗(a), such
that

d(zi−1, zi) ≤ N for i ∈ [1, l ].

Definition
The catenary degree cd(a) is the smallest N such that for all
z, z ′ ∈ Z∗(a), there exists an N-chain between z and z ′.

cd(H) = sup{ cd(a) | a ∈ H }.



Transfer homomorphisms

Definition
Let H, T be cancellative monoids, T× = {1}. A homomorphism
θ : H → T is a transfer homomorphism if

1 θ(H) = T and θ−1({1}) = H×.
2 Whenever θ(a) = st, there exist b, c ∈ H such that

a = bc, θ(b) = s, and θ(c) = t.



Transfer homomorphisms

Theorem
If θ : H → T is a transfer homomorphism, it induces a
homomorphism θ∗,

Z∗(H) Z∗(T )

H T ,

θ∗

θ

with θ∗(Z∗(a)) = Z∗(θ(a)).

L(H) = L(T ).
If T is commutative

cd(H) ≤ max{cp(T ), c(θ)}.



Monoid of zero-sum sequences

Let (G,+) be an abelian group, G0 ⊆ G, (F(G0), ·) the free
abelian monoid with basis G0.

S = g1 · · · gl ∈ F(G0) is called a sequence (formal product!).
σ(S) = g1 + · · ·+ gl ∈ G is its sum.
S is a zero-sum sequence if σ(S) = 0.

Definition
The submonoid

B(G0) = {S ∈ F(G0) | σ(S) = 0G } ⊂ F(G0)

is the monoid of zero-sum sequences over G0.

If G0 is finite, then B(G0) is a finitely generated Krull monoid
(finitely many atoms, arithmetical invariants finite, ...)



Reminder: Commutative Dedekind domains

Theorem
Let R be a commutative Dedekind domain, (G,+) its class group,

G0 = { [p] | p ∈ spec(R) }.

There is a transfer homomorphism θ : R• → B(G0):

a aR

R• F(spec(R)) p1 · · · pr

B(G0) F(G0) [p1] · · · [pr ]

θ

Moreover, c(θ) ≤ 2.



Hereditary noetherian prime (HNP) rings



Hereditary orders

Let
K be a number field,
O its ring of algebraic integers,
A a central simple K -algebra,
O ⊂ R ⊂ A an order in A
(subring, RO finitely generated,
KR = A).

A ∼= Mn(D)

. . .R . . . K

O

Definition

R is a maximal order if it is not contained in a strictly larger
order.
Maximal orders are hereditary (right ideals are projective).



Examples...

Hurwitz quaternions

Z
[
1, i , j, 1 + i + j + k

2

]
with i2 = j2 = k2 = −1, ij = −ji = k.

With p a prime, [
Z pZ
Z Z

]
.



HNP rings

(Noncommutative) hereditary noetherian prime (HNP)
rings are analogues of commutative Dedekind domains.
Structure theory for f. g. projective modules and for
finite-length modules (Levy–Robson 2011).
Examples:

Hereditary orders over commutative Dedekind domains.
Endomorphism rings of f. g. projective modules over Dedekind
domains.
Some skew polynomial rings over commutative Dedekind
domains, e.g.,

A = A1(K) = K [y ][x ; d
dy ], K [x±1][y±1;σ] with yx = qxy .

R is right bounded, if for every a ∈ R•, there exists a
nonzero ideal I ⊆ R with I ⊆ aR .



From factor lattices to modules

Z∗(a) [aR ,R ] ? R/aR .

How to go from R/aR back to [aR ,R ] ?
Commutative: ann(R/I) = I; if R is a Dedekind domain:

R/

r∏
i=1

pei
i
∼=

r⊕
i=1

R/pei
i .

Noncommutative: R/aR ∼= R/I ⇒ ?

0 I R R/aR 0

0 aR R R/aR 0

⇒ I ⊕ R ∼= aR ⊕ R . I is stably free.
Problem!
There can be non-principal, stably free right ideals I.



Hermite rings

Definition
R is a (right) Hermite ring if every stably free right R-module is
free.

Commutative Dedekind domains are Hermite.
HNP rings R with udim R ≥ 2 are Hermite.
Indefinite hereditary orders over rings of algebraic integers are
Hermite (by strong approximation).
Definite (quaternion) orders over rings of algebraic integers
are usually not Hermite.
A1(K) is not Hermite.



Modules over HNP rings

Let V , W be simple modules.

Definition
W is a successor of V if Ext1R(V ,W ) 6= 0.

Isomorphism classes of simple modules are organized into cycle
towers and faithful towers.
W1, . . . , Wn pairwise non-isomorphic simple modules.

Cycle tower: All Wi are unfaithful. Wi+1 is a successor of
Wi , and W1 is a successor of Wn.
Faithful tower: W1 is faithful, W2, . . . , Wn are unfaithful.
Wi is a successor of Wi−1, and Wn has no unfaithful
successor.

In a bounded HNP ring, all simple modules are unfaithful.



Modules over HNP rings

If a ∈ R•, then R/aR has finite length.

If R is bounded, every finite length module M is a direct sum of
uniserial modules,

M ∼= U1 ⊕ · · · ⊕ Un.

The composition factors of Ui form a slice of a repetition of the
modules of a cycle tower T .



A class group

S(R) ... isomorphism classes of simple modules.

T (R) ⊂ F(S(R)) ... towers (as sums of their simple modules),

K0 modfl(R) = qF(S(R)) ⊇ qF(T (R))

For M a module of finite length with composition factors W1,
. . . , Wn, have

(M) = (W1) + · · ·+ (Wn) ∈ F(S(R)).

Proposition
If a ∈ R•, then (R/aR) ∈ F(T (R))



A class group

Set P(R) = { (R/aR) | a ∈ R• } ⊆ F(T (R)).

Definition
The class group of R is

C(R) = qF(T (R)) / 〈P(R)〉.

Set Cmax(R) = { [T ] ∈ C(R) | T ∈ T (R) }.

C(R) ∼= G(R) = ker(Ψ+).
C(R) and Cmax(R) are Morita invariant.



Main result for HNP rings

Theorem
Let R be a bounded HNP ring. Suppose R is a Hermite ring.

P(R) = { (R/aR) | a ∈ R• } is a commutative Krull monoid,
and P(R)→ F(T (R)) is a cofinal divisor homomorphism.
There exists a transfer homomorphism

θ : R• → P(R),

and a transfer homomorphism to the monoid of zero-sum
sequences

θ : R• → B(Cmax(R)).

cd(θ) ≤ 2 and cd(θ) ≤ 2.



Hereditary orders

Theorem
Let R be a hereditary order over a ring of algebraic integers O.
Then C(R) ∼= CA(O) is a ray class group of O, hence finite, and
Cmax(R) = C(R).

1 If R is a Hermite ring, there exists a transfer homomorphism
to B(CA(O)), all arithmetical invariants are finite.

2 If R is maximal and not Hermite, then ρ(R•) =∞,
∆(R•) = N, ...

Remark
(1) is the usual case; (2) only happens in definite quaternion
algebras.



A corollary

Corollary
Let R be a bounded Hermite HNP ring. Suppose further that
Cmax(R) = C(R), and that, if C(R) ∼= C2, there exist at least two
distinct towers T1 and T2 with 〈T1〉 = 〈T2〉 6= 0. Then

1 R• is composition series factorial if and only if C(R) = 0.
Otherwise, ccs(R•) ≥ 2.

2 R• is similarity factorial if and only if R is a principal ideal
ring. Otherwise, csim(R•) ≥ 2.

3 R• is rigidly factorial if and only if R is a local principal ideal
ring. Otherwise, c∗(R•) ≥ 2.



Beyond boundedness: TheWeyl algebra

Let K be a field, char(K) = 0,

A = K [y ][x ; d
dy ] = K〈x , y〉/〈xy − yx − 1〉.

A is ....

a simple HNP ring, all towers are trivial, C(A) = 0

not Hermite.
not half-factorial,

x2y = (1 + xy)x

⇒ ρ(A•) ≥ 3/2, in fact ρ(A•) =∞.
M2(A) is a prime PIR, in particular Hermite, similarity
factorial.[

1 + xy 0
0 1

]
=

[
x2 1 + xy
x y

] [
−y2 y

xy + 1 −x

]
.



Beyond boundedness

We can still rescue the conclusions of the main theorem as long as
faithful towers are trivial,
Ext1R(V ,W ) = 0 if V , W are faithful simple modules in
different classes of C(R).

Let R = IA(xA) = K + xA be the idealizer of the maximal right
A-ideal xA.

R has a single faithful tower of length 2: A/R , R/xA.
C(R) = 0, all other towers of R are trivial & faithful.
Same is true for M2(R) and it is Hermite, but not
half-factorial.



For
a =

[
x(x − y)(x − yx) x(x − y)(−xy + xy2)
x2 − (1 + xy)x (1 + xy)(1− x) + x2y2

]
we have

a =

[
x(x − y) 0

0 1

]
︸ ︷︷ ︸

u1

[
x − yx −xy + xy2

x2 − (1 + xy)x (1 + xy)(1− x) + x2y2

]
︸ ︷︷ ︸

u2

=

[
x xy
x 1 + xy

]
︸ ︷︷ ︸

w1

[
−xy2 + x2y − xy − x + 1 −xy3 + x2y2 − xy2 − xy

xy − x2 + x xy2 − x2y + xy + 1

]
︸ ︷︷ ︸

w2

[
x −xy
−x 1 + xy

]
︸ ︷︷ ︸

w3



Non-hereditary orders

Non-uniqueness of factorizations in orders due to: non-trivial class
group, non-Hermite, local obstructions.

Theorem
Let K be the quotient field of a DVR, let A be a quaternion
algebra over K, and let R be a non-hereditary order in A. Then

ρ(R•) <∞ ⇐⇒ Â is a division ring.
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