

‘Every’ set is a set of lengths of some numerical monoid

W.A. Schmid

LAGA, Université Paris 8, France

February 2018 / Graz

Numerical monoids

A numerical monoid H is a submonoid of $(\mathbb{N}_0, +)$ with finite complement.

A numerical monoid is finitely generated and reduced. Let $\mathcal{A}(H) = \{n_1 < \dots < n_t\}$ denote the set of irreducible elements. (Every nontrivial submonoid of $(\mathbb{N}_0, +)$ is isomorphic to a numerical monoid.)

Since

$$\underbrace{n_1 + \dots + n_1}_{n_t} = \underbrace{n_t + \dots + n_t}_{n_1}$$

it follows that H is not a unique factorization monoid unless $t = 1$ (which implies $n_1 = 1$ and $H = \mathbb{N}_0$).

The question arises to understand the arithmetic of these monoids more precisely.

Sets of lengths

A monoid $(H, +)$ (commutative, cancellative) is called

1. *atomic* if each non-zero element a is the sum (of finitely many) irreducible elements.
2. *factorial* if there is an essentially unique factorization into irreducibles (i.e., up to ordering and associates).

Sets of lengths, II

If

$$a = a_1 + \cdots + a_n$$

with irreducibles a_i , then n is called a length of a .

$$L(a) = \{n: n \text{ is a length }\}.$$

For $a = 0$ we set $L(a) = \{0\}$.

The *system of sets of lengths* is

$$\mathcal{L}(H) = \{L(a): a \in H\}.$$

Sets of lengths, III

In general, sets of lengths can be infinite. Yet, for finitely generated monoids (as well as many other classes of interest) they are *finite*.

The property is called BF (bounded factorization).

Note: Each set of lengths is finite, but still in general there are infinitely many sets.

So

$$\mathcal{L}(H) \subset \mathbb{P}_{\text{fin}}(\mathbb{N}_0).$$

General properties of systems of sets of lengths (of BF)

Let $L, L' \in \mathcal{L}(H)$.

- ▶ If $0 \in L$, then $L = \{0\}$.
- ▶ If $1 \in L$, then $L = \{1\}$.
- ▶ Let $S = L + L' = \{l + l' : l \in L, l' \in L'\}$. There exists some $L'' \in \mathcal{L}(H)$ such that $S \subset L''$.

If $\mathcal{L}(H)$ contains some L with $|L| \geq 2$, then $\mathcal{L}(H)$ contains arbitrarily large sets.

Moreover

$$\mathcal{L}(H) \subset \{\{0\}, \{1\}\} \cup \mathbb{P}_{\text{fin}}(\mathbb{N}_{\geq 2}).$$

Dichotomy (for BF-structures)

- ▶ Either $|L(a)| = 1$ for each a ,
- ▶ or for each n there exists a a_n such that $|L(a_n)| \geq n$.

For a numerical monoid other than \mathbb{N}_0 it is always the latter.

Distances

Let $L = \{\ell_1 < \ell_2 < \dots < \ell_r\}$, then

$$\Delta(L) = \{\ell_2 - \ell_1, \ell_3 - \ell_2, \dots, \ell_r - \ell_{r-1}\}.$$

For H BF-monoid, let

$$\Delta(H) = \bigcup_{a \in H} \Delta(L(a))$$

the set distances of H .

And,

$$\min \Delta(H)$$

the minimal distance of H .

Elasticities

Consider for $k \in \mathbb{N}$

$$\rho_k(H) = \sup\{\sup L: k \in L, L \in \mathcal{L}(H)\}$$

And, $\rho(H) = \sup_k \rho_k(H)/k$.

Or, for $a \in H \setminus \{0\}$ let

- ▶ $\rho(a) = \sup L(a) / \min L(a)$,
- ▶ $R(H) = \{\rho(a): a \in H \setminus \{0\}\}$ and
- ▶ $\rho(H) = \sup R(H)$.

Some results on elasticities

Let $H = \langle n_1 < \dots < n_t \rangle$ a numerical monoid.

- ▶ Then $\rho(H) = n_t/n_1$, and this is the unique accumulation point of $R(H)$. (Chapman, Holden, Moore, 2006)
- ▶ More precisely, $R(H)$ is the union of a finite set and $n_1 n_t$ monotone increasing sequences converging to $\rho(H)$. (Barron, O'Neill, Pelayo, 2017)

Some results on distances

Let $H = \langle n_1 < \dots < n_t \rangle$ a numerical monoid.

$$\min \Delta(H) = \gcd \Delta(H) = \gcd\{n_{i+1} - n_i : i = 1, \dots, t-1\}$$

Let $H = \langle n_1 < n_2 \rangle$ then $\Delta(H) = \{n_2 - n_1\}$.

- ▶ Let $d \geq 1$ and $t \geq 2$, then there exists a numerical monoid H with $\Delta(H) = \{d, 2d, \dots, td\}$. (Bowles, Chapman, Kaplan, Reiser 2007)
- ▶ Let $d \geq 1$ and $t \geq 2$, then there exists a numerical monoid H with $\Delta(H) = \{d, td\}$. (Colton, Kaplan 2017)

Which sets are sets of lengths

Let H be a BF monoid. We know

$$\mathcal{L}(H) \subset \{\{0\}, \{1\}\} \cup \mathbb{P}_{\text{fin}}(\mathbb{N}_{\geq 2}).$$

Is there a tighter ambient set?

For a particular monoid or also for a particular class of monoids?

- ▶ In general, no. For example, for monoids of zero-sum sequences over infinite abelian groups or for $\text{Int}(\mathbb{Z})$ one has $\mathcal{L}(H) = \{\{0\}, \{1\}\} \cup \mathbb{P}_{\text{fin}}(\mathbb{N}_{\geq 2})$.
- ▶ For numerical monoids?

Which sets are sets of lengths

Let H be a numerical monoid. Since $\rho(H) = n_t/n_1$, of course

$$\mathcal{L}(H) \subsetneq \{\{0\}, \{1\}\} \cup \mathbb{P}_{\text{fin}}(\mathbb{N}_{\geq 2}).$$

But the restriction depends on the specific H .

Question: Is there some $L \in \{\{0\}, \{1\}\} \cup \mathbb{P}_{\text{fin}}(\mathbb{N}_{\geq 2})$ that does not appear in $\mathcal{L}(H)$ for any numerical monoid at all?

Answer: No. ‘Every’ set is a set of length for some numerical monoid. (Geroldinger, S.). And even something more precise holds.

Some more notation

Let H be an additively written monoid. The (additively written) free abelian monoid $Z(H) = \mathcal{F}(\mathcal{A}(H_{\text{red}}))$ is called the *factorization monoid* of H and the canonical epimorphism $\pi: Z(H) \rightarrow H_{\text{red}}$ is the factorization homomorphism. For $a \in H$ and $k \in \mathbb{N}$,

- ▶ $Z_H(a) = Z(a) = \pi^{-1}(a + H^\times) \subset Z(H)$ set of factorizations of a
- ▶ $Z_{H,k}(a) = Z_k(a) = \{z \in Z(a) \mid |z| = k\}$ set of factorizations of a of length k
- ▶ $L_H(a) = L(a) = \{|z| \mid z \in Z(a)\} \subset \mathbb{N}_0$ is the set of lengths of a .

Main result

Theorem (Geroldinger, S.)

Let $L \subset \mathbb{N}_{\geq 2}$ be a finite nonempty set and $f: L \rightarrow \mathbb{N}$ a map.
Then there exist a numerical monoid H and a squarefree element $a \in H$ such that

$$L(a) = L \quad \text{and} \quad |Z_k(a)| = f(k) \quad \text{for every } k \in L.$$

A result for rings

Corollary

Let K be a field, $L \subset \mathbb{N}_{\geq 2}$ a finite nonempty set, and $f: L \rightarrow \mathbb{N}$ a map. Then there is a numerical monoid H and a squarefree element $g \in K[H]$ such that

$$\mathsf{L}_{K[H]}(g) = L \quad \text{and} \quad |\mathsf{Z}_{K[H],k}(g)| = f(k) \quad \text{for every } k \in L.$$

Idea of proof

- ▶ Construct the monoid recursively.
- ▶ Add new irreducibles to create new factorizations.
- ▶ Problem: there might be no space left.
- ▶ Solution: change the scale.

To do this cleanly we work with Puiseux monoids, that is, submonoids of $(\mathbb{Q}_{\geq 0}, +)$.

A dual question

We just saw

$$\bigcup_{H \text{ numerical mon.}} \mathcal{L}(H) = \{\{0\}, \{1\}\} \cup \mathbb{P}_{\text{fin}}(\mathbb{N}_{\geq 2}).$$

What about

$$\bigcap_{H \text{ numerical mon.}} \mathcal{L}(H) \quad ?$$

‘Every’ set is a set of lengths of some numerical monoid

W.A. Schmid

LAGA, Université Paris 8, France

February 2018 / Graz