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Consider a local one-dimensional Mori (in particular, noetherian)
domain (R,M). Since R is Mori, we see that each non-zero principal
ideal of R contains a power of the maximal ideal M . Domains satisfying
this property are called strongly primary domains.

A monoid in this talk is a cancellative semigroup with 1 which is not a
group. The monoid H is primary if for any two non-units a, b ∈ H, the
s-ideal aH contains a power of bH. The monoid H is strongly primary
if each non-unit of H contains a power of m (the set of non-units of
H).

It is well-known and easy to prove that if H is a strongly primary
monoid, then

⋂
n≥1m

n = ∅. In particular, H is archimedean, that is⋂
n≥1 s

nH = ∅ for each non-unit s ∈ H. A strongly primary monoid is
atomic.

If H is a strongly primary monoid, and s ∈ H, we denote by M(s)
the smallest positive integer k such that Mk ⊆ sH. The minimal length
of a factorization of an element s ∈ m is denoted by Λ(s). We let

Λ(H) = sup{Λ(s) | s ∈ m}.

We let

Ĥ = {x ∈ q(H) | (∃d ∈ H)(∀n ∈ N)(dxn ∈ H),

the complete integral closure of H.

For a domain R we define R̂ in a similar way, requiring that d 6= 0,

thus R̂ = R̂• ∪ {0}, where R• is the multiplicative monoid R \ {0}.
The purpose of this talk is to prove Theorem 1. Four auxiliary

results needed in the proof are collected in Lemma 2. Theorem 1
provides a positive answer to Geroldinger’s question whether a local
one dimensional Mori domain is locally tame. Indeed, if H is an atomic
monoid such that Λ(H) < ∞, then H is locally tame. On the other
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hand, it was already known that a local one dimensional Mori domain

with nonzero conductor (R :R̂) is locally tame.

Theorem 1. Let R be a strongly primary domain. If (R : R̂) = {0},
then Λ(R) <∞.

Proof. Assume that Λ(R) =∞. Let n = Ĥ \ (Ĥ)×. Choose a nonzero

element c ∈ M . Let n be a positive integer. Since (R : R̂) = {0}, we

infer that (cnn)R̂ 6⊆ R, whence there exists an element x ∈ n such that
cnx /∈ R.

By Lemma 2 (4), we have xi ∈M for all sufficiently large i ∈ N (the
set of nonnegative integers). Let i ∈ N be maximal such that cnxi /∈M ,
thus i > 0, and cnxj ∈ M for j > i. Since the monoid R• is primary,
there exists a minimal positive integer k such that ckxi ∈ M , thus
k > n, and ckxj ∈M , for all j ≥ i. Set y = ck−nxi. Thus cnyj ∈M for
all j ≥ 1, cn−1y /∈ M , and cn−1yj ∈ M for all j > 1. There exists an
integer e ∈ N such that ye ∈M . Hence

(1− y)(1 + y + · · ·+ ye−1) = 1− ye ∈ R×,

Thus

cn(1− y) ∈ R, and
cn

1− y
= cn

1 + y + · · ·+ ye−1

1− ye
∈ R.

We see that cn(1− y) and cn

1−y are not divisible by c in R. We have

c2n =
(
cn(1− y)

)( cn

1− y

)
.

Thus c2n is a product of two elements that are not divisible by c in R,
whence Λ(c2n) < M(c) +M(c). By Lemma 2 (2) we conclude that
Λ(R) <∞. �

The next lemma is formulated for monoids, but it is clear that it can
also be applied to domains.

Lemma 2. Let (H,m) be a strongly primary monoid.

(1) If x ∈ q(H) with x−1 /∈ H, then Λ(H \ xH) <M(x).
(2) We have Λ(H) < ∞ if and only if there is an element c ∈ m

with Λ({cm | m ∈ N}) <∞.

(3) If there is an element x ∈ n (the set of non-units in Ĥ), such
that no power of x belongs to n, then Λ(H) <∞.

(4) If Λ(H) = ∞, then for every x ∈ n, we have xn ∈ m for all
sufficiently large n ∈ N.
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Proof.

(1) If a ∈ H \ xH, then a /∈ mM(x) as mM(x) ⊆ xH.
Thus Λ(H \ xH) <M(x)

(2) Let c ∈ m such that Λ({cm | m ∈ N}) < ∞. Let a ∈ H. .
Since H is archimedean, there is an n ∈ N0 such that a = cnb,
where b ∈ H is not divisible by c. Now (1) implies that

Λ(a) ≤ Λ(cn) + Λ(b) < Λ({cm | m ∈ N}) +M(c) .

Thus Λ(H) <∞. The reverse implication is trivial.
(3) Let d ∈ m such that dxn ∈ H for all n ∈ N. Let c ∈ m. If

c /∈ dH, then Λ(c) <M(d) by (1). Suppose that c ∈ dH. Since

x is not invertible in Ĥ, there is an integer n ∈ N such that
(cd−1)x−n ∈ H and (cd−1)x−(n+1) /∈ H. Thus (cd−1)x−n /∈ xH.
so Λ((cd−1)x−n) <M(x) by 1. Since dxn /∈ dH we obtain by
(1) that

Λ(c) = Λ((dxn)((cd−1)x−n)) <M(d) +M(x).

Hence Λ(H) <M(d) +M(x) <∞.
(4) Let x ∈ n. Since Λ(H) = ∞, by item (3) there is a k ∈ N

such that xk ∈ m. Since H is primary, there is a q0 ∈ N such
that xq0k+r = (xk)q0xr ∈ m for all r ∈ [0, k − 1]. If n ∈ N with
n ≥ q0k, then n = qk + r, where q ≥ q0 and r ∈ [0, k − 1], and
xn = xk(q−q0)xq0k+r ∈ m.

�

Theorem 1 uses the additive structure of the domain R, although it is
formulated in multiplcative terms. This is not incidental. Indeed, this
theorem is false for strongly primary monoids, as shown in Proposition
3.7 of the article

A. Geroldinger, W. Hassler, and G. Lettl, On the arithmetic of
strongly primary monoids, Semigroup Forum 75 (2007), 567 – 587.

Next, we formulate without proof three more theorems. Some parts
of them are well-known.

Theorem 3.
(a) Let (H,m) be a strongly primary monoid. Then each of the

first 7 conditions below implies its successor. Moreover, the
first two condtions are equivalent:
(1) H is globally tame.
(2)

⋂
a∈A(H) aH 6= ∅.

(3) There is a k ∈ N such that mk ⊆ aH for every a ∈ A(H).
(4) ρ(H) <∞.
(5) ρk(H) <∞ for all k ∈ N.
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(6) Λ(H) =∞.

(7) Ĥ is a primary valuation monoid.

(8) Ĥ is a valuation monoid.

If f = (H : Ĥ) 6= ∅, then all conditions are equivalent, in-
cluding conditions (9)-(10) below:

(9) fm ⊆
⋂

a∈A(H) aĤ.

(10) fm2 ⊆
⋂

a∈A(H) aH.

(b) Let Rbe a strongly primary domain. Then all conditions of
item (a) are equivalent if we replace H by R and add the re-

quirement f = (R :R̂) 6= ∅ to conditions (7) and (8):

(7[]) R̂ is a primary valuation domain and f = (R :R̂) 6= ∅.
(8) R̂ is a valuation domain and f = (R :R̂) 6= ∅.

Theorem 4.

(1) Let H be a strongly primary monoid. Then H is locally tame
if it satisfies one of the following two conditions:
• Λ(H) <∞.

• Λ(H) =∞ and (Ĥ :H) 6= (0)

Moreover, if (Ĥ :H) 6= (0), then all conditions (1)-(10) of
Theorem 3 are equivalent.

(2) A strongly primary domain is locally tame, and conditions (1)-
(7), (8’), (9’), (10) of Theorem 3 are equivalent.

Theorem 5.

(1) Let H be a strongly primary monoid.

(a) H is globally tame if Λ(H) =∞ and (H :Ĥ) 6= ∅.
(b) H is not globally tame if Λ(H) <∞

(2) A strongly primary domain R is globally tame if and only if
Λ(R) =∞. A globally tame domain satisfies all the conditions
(1)-(10) of Theorem 3.


