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Notation

D denotes an integral domain

D] is the set of nonzero nonunits elements of D

τ denotes a symmetric relation on D]

R. M. Ortiz-Albino τ-Factorization



Notation and Definitions
Equivalence relations

Definitions
Relations

Outline

1 Notation and Definitions
Definitions
Relations

2 Equivalence relations
Motivation
Some results (Ortiz and Serna)

R. M. Ortiz-Albino τ-Factorization



Notation and Definitions
Equivalence relations

Definitions
Relations

Definition of a τ-Factorization

Definition

We say x ∈ D] has a τ-factorization if x = λx1 · · ·xn where λ is a
unit in D and xi τ xj for each i 6= j .

We say x is a τ-product of xi ∈ D] and each xi is a τ-factor
of x (we write xi |τ x).

Vacuously, x = x and x = λ · (λ−1x) are τ-factorizations,
known as the trivial ones.

Definition

In general, x |τ y (read x τ-divides y) means y has a
τ-factorization with x as a τ-factor.
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Definition

We call x ∈ D] a τ-atom, if the only τ-factorizations of x are of
the form λ (λ−1x) (the trivial τ-factorizations).

Example: Irreducible elements are τ-atoms (for any relation τ

on D]).

Definition

A τ-factorization λx1 · · ·xn is a τ-atomic factorization if each xi
is a τ-atom.
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Definition

If you exchange the factorization, irreducible elments and divide
operator by τ-factorization, τ-atom and |τ operator in the
definitions of GCD domain, UFD, HFD, FFD, BFD and ACCP. We
obtain the notions of:

τ-GCD domain,

τ-UFD,

τ-HFD,

τ-FFD,

τ-BFD, and

τ-ACCP.
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Examples

Example

Let τD = D]×D] (the greatest relation), then the
τD-factorizations are the usual factorizations.

Example

Let τ /0 = ∅ (the trivial), then we have that every element is a
τ-atom. So any integral domain is in fact a τ /0-UFD.

Example

Let τS = S×S , where S ⊂D]. Hence you can consider S is the set
of primes, irreducible, primals, primary elements, rigid elements,...
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Types of Relations

Associate
preserving

Divisive

Multiplicative

Definitions and Properties

Let x ,y ,z ∈ D].

We say τ is associate-preserving if
xτy and y ∼ z implies xτz .

If λx1 · · ·xn is a τ-fatorization, then
x1 · · ·xi−1 · (λxi ) ·xi+1 · · ·xn is also a
τ-factotization.
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Definitions and Properties

Let x ,y ,z ∈ D].

We say τ is divisive if xτy and z | x
implies zτy .

Divisive implies associate-preserving.

If τ is divisive, then we can do
τ-refinements.

That is, if x1 · · ·xn is a τ-factorization
and z1 · · ·zm is a τ-factorization of xi
then x1 · · ·xi−1 · z1 · · ·zm ·xi+1 · · ·xn is
also a τ-factorization.
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preserving
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Multiplicative

Definitions and Properties

Let x ,y ,z ∈ D].

We say τ is multiplicative if xτy and
xτz implies xτ(yz).

If τ is multiplicative, then each
nontrivial τ-factorization can be
written into a τ-product of length 2
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Example

Let τ(n) = {(a,b) | a−b ∈ (n)} a relation on Z], for each n ≥ 0.

For n = 1, we obtained the usual factorizations.

Note that for n ≥ 2, τ(n) is never divisive, but it is
multiplicative and associate-preserving for n = 2.

(Hamon) Z is a τ(n)-UFD if and only if n = 0,1.

(Hamon and Juett) Z is a τ(n)-atomic domain if and only if
n = 0,1,2,3,4,5,6,8,10.

(Ortiz) Z is a τ(n)-GCD domain if and only if is a τ(n)-UFD.
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Example

Let ∗ be a start-operation on D. Then define
xτ∗y ⇐⇒ (x ,y)∗ = D, that is, x and y are ∗-comaximal.

It is both multiplicative and divisive.

If ? = d , then a d-factorization is the known comaximal
factorization defined by McAdam and Swam.
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Diagram of Properties (Anderson and Frazier)

UFD //

∗

��

FFD //

∗
��

BFD //

∗

��

ACCP //

��

atomic

τ-FFD

%%
τ-UFD

99

%%

τ-BFD
∗ // τ-ACCP

∗ // τ-atomic

τ-HFD

99

Figure: Diagram of structures and τ-structures, when τ is divisive.
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Definition of “≤”

Definition

We say τ1 ≤ τ2, if τ1 ⊆ τ2 as sets.

Theorem

Let D be an integral domain and τ1,τ2 be two relations on D].
The following are equivalent:

τ1 ≤ τ2.

For any x ,y ∈ D], xτ1y ⇒ xτ2y.

Any τ1-factorization is a τ2-factorization.

R. M. Ortiz-Albino τ-Factorization



Notation and Definitions
Equivalence relations

Definitions
Relations

Theorem (Ortiz)

τ2-UFD //

��

τ2-FFD //

��

τ2-BFD //

��

τ2-ACCP //

��

τ2-atomic

τ1-FFD

%%
τ1-UFD

99

%%

τ1-BFD // τ1-ACCP // τ1-atomic

τ1-HFD

99

Figure: Properties when τ1 ⊆ τ2 both divisive and τ2 multiplicative
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Theorem(Juett)

τ2-UFD //

��

τ2-FFD //

��

τ2-BFD //

��

τ2-ACCP //

��

τ2-atomic

τ1-FFD

%%
τ1-UFD

99

%%

τ1-BFD // τ1-ACCP // τ1-atomic

τ1-HFD

99

Figure: Properties when τ1 ⊆ τ2, τ1 divisive and τ2 refinable and
associated-preserving
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Equivalence relations have historical precedent.

Equivalence relation are less artificial relations.

There is only one divisive equivalence relation τD .

Divisive seems to be more-less understood to be good type of
relation.
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Diagram of Properties (Ortiz and Serna)

UFD // FFD //

∗
��

BFD //

∗

��

ACCP //

��

atomic

τ-FFD

%%
τ-UFD

99

%%

τ-BFD
∗ // τ-ACCP

∗ // τ-atomic

τ-HFD

99

Figure: In this case τ is an associated-preserving multiplicative
equivalence relation.
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Associated-preserving clousure of an equivalence relation

Definition

Let τ be an equivalence relation on D]. The associated-preserving
clousure of τ is denoted by τ ′, which is the intersection of all
associated-preserving equivalence relations on D] containing τ.

Theorem

Suppose τ (is unital) has the following property: for any x ,y ∈ D]

and λ ∈ U(D), if xτy, then (λx)τ(λy). Then

τ
′ = {(µ1x ,µ2y)|(x ,y) ∈ τ and µ1,µ2 ∈ U(D)}
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Theorem

If τ is unital equivalence relation, then we may assume τ is
associated-preserving, because

x has a τ ′-factorization if and only if x has a τ-factorization

x |τ ′ y if and only if x | τy
x is a τ ′-atom if and only if x is a τ-atom

D is τ ′-atomic if and only if D is τ-atomic

τ ′-UFD

��

τ ′-HFD

��

τ ′-FFD

��

τ ′-BFD

��

τ ′-ACCP

��
τ-UFD

OO

τ-HFDOO τ-FFD

OO

τ-BFD

OO

τ- ACCP

OO

Figure: Properties of the associated-preserving equivalence unital relation
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Example

If you consider τ ′(n), then

τ ′(n) is an equivalence relation with the ”half” number of
equivalence classes than τ(n),

τ ′(n) is always associated-preserving relation,

τ ′(n) is multiplicative only if n ∈ {1,2,3,6} (it is also the

multiplicative clousure), and

τ ′(n) coincides with Lanterman relation called µ(n), presented
at JMM 2013.

Something about notions of τ(n)-number theory.
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Thanks for the invitation.

email reyes.ortiz@upr.edu

R. M. Ortiz-Albino τ-Factorization


	Notation and Definitions
	Definitions
	Relations

	Equivalence relations
	Motivation
	Some results (Ortiz and Serna)


