

A type of generalized factorization on domains

τ -Factorizations

R.M. Ortiz-Albino

Conference of rings and factorizations, 2018

Outline

1 Notation and Definitions

- Definitions
- Relations

2 Equivalence relations

- Motivation
- Some results (Ortiz and Serna)

Notation

- D denotes an integral domain
- D^\sharp is the set of nonzero nonunits elements of D
- τ denotes a symmetric relation on D^\sharp

Outline

1 Notation and Definitions

- Definitions
- Relations

2 Equivalence relations

- Motivation
- Some results (Ortiz and Serna)

Definition of a τ -Factorization

Definition

We say $x \in D^\sharp$ has a **τ -factorization** if $x = \lambda x_1 \cdots x_n$ where λ is a unit in D and $x_i \tau x_j$ for each $i \neq j$.

- We say x is a **τ -product** of $x_i \in D^\sharp$ and each x_i is a **τ -factor** of x (we write $x_i \mid_\tau x$).
- Vacuously, $x = x$ and $x = \lambda \cdot (\lambda^{-1}x)$ are τ -factorizations, known as the trivial ones.

Definition

In general, $x \mid_\tau y$ (read x **τ -divides** y) means y has a τ -factorization with x as a τ -factor.

Definition

We call $x \in D^\#$ a **τ -atom**, if the only τ -factorizations of x are of the form $\lambda(\lambda^{-1}x)$ (the **trivial τ -factorizations**).

- Example: Irreducible elements are τ -atoms (for any relation τ on $D^\#$).

Definition

A τ -factorization $\lambda x_1 \cdots x_n$ is a **τ -atomic factorization** if each x_i is a τ -atom.

Definition

If you exchange the factorization, irreducible elements and divide operator by τ -factorization, τ -atom and $|_\tau$ operator in the definitions of GCD domain, UFD, HFD, FFD, BFD and ACCP. We obtain the notions of:

- τ -GCD domain,
- τ -UFD,
- τ -HFD,
- τ -FFD,
- τ -BFD, and
- τ -ACCP.

Examples

Example

Let $\tau_D = D^\# \times D^\#$ (the greatest relation), then the τ_D -factorizations are the usual factorizations.

Example

Let $\tau_\emptyset = \emptyset$ (the trivial), then we have that every element is a τ -atom. So any integral domain is in fact a τ_\emptyset -UFD.

Example

Let $\tau_S = S \times S$, where $S \subset D^\#$. Hence you can consider S is the set of primes, irreducible, primals, primary elements, rigid elements,...

Outline

1 Notation and Definitions

- Definitions
- Relations

2 Equivalence relations

- Motivation
- Some results (Ortiz and Serna)

Types of Relations

Definitions and Properties

- Associate preserving
- Divisive
- Multiplicative

Let $x, y, z \in D^\#$.

- We say τ is **associate-preserving** if $x\tau y$ and $y \sim z$ implies $x\tau z$.
- If $\lambda x_1 \cdots x_n$ is a τ -fatorization, then $x_1 \cdots x_{i-1} \cdot (\lambda x_i) \cdot x_{i+1} \cdots x_n$ is also a τ -factotization.

Types of Relations

Definitions and Properties

Let $x, y, z \in D^\#$.

- Associate preserving
- **Divisive**
- Multiplicative

- We say τ is **divisive** if $x\tau y$ and $z \mid x$ implies $z\tau y$.
- Divisive implies associate-preserving.
- If τ is divisive, then we can do τ -refinements.
- That is, if $x_1 \cdots x_n$ is a τ -factorization and $z_1 \cdots z_m$ is a τ -factorization of x_i then $x_1 \cdots x_{i-1} \cdot z_1 \cdots z_m \cdot x_{i+1} \cdots x_n$ is also a τ -factorization.

Types of Relations

Definitions and Properties

Let $x, y, z \in D^\sharp$.

- Associate preserving
- Divisive
- Multiplicative

- We say τ is **multiplicative** if $x\tau y$ and $x\tau z$ implies $x\tau(yz)$.
- If τ is multiplicative, then each nontrivial τ -factorization can be written into a τ -product of length 2

More Examples

Example

Let $\tau_{(n)} = \{(a, b) \mid a - b \in (n)\}$ a relation on \mathbb{Z}^\sharp , for each $n \geq 0$.

- For $n = 1$, we obtained the usual factorizations.
- Note that for $n \geq 2$, $\tau_{(n)}$ is never divisive, but it is multiplicative and associate-preserving for $n = 2$.
- (Hamon) \mathbb{Z} is a $\tau_{(n)}$ -UFD if and only if $n = 0, 1$.
- (Hamon and Juett) \mathbb{Z} is a $\tau_{(n)}$ -atomic domain if and only if $n = 0, 1, 2, 3, 4, 5, 6, 8, 10$.
- (Ortiz) \mathbb{Z} is a $\tau_{(n)}$ -GCD domain if and only if is a $\tau_{(n)}$ -UFD.

More Examples

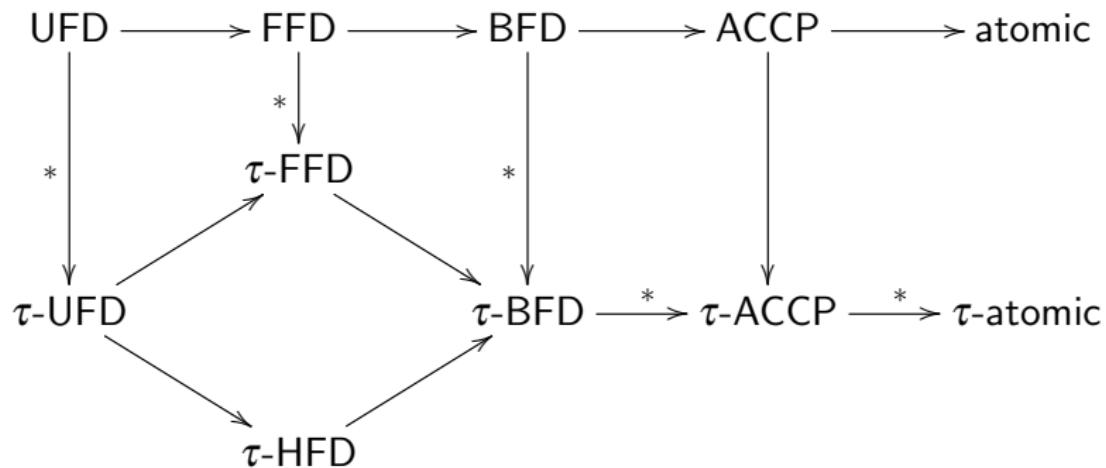
Example

Let $*$ be a start-operation on D . Then define

$x\tau_*y \iff (x,y)^* = D$, that is, x and y are $*$ -comaximal.

- It is both multiplicative and divisive.
- If $*$ = d , then a d -factorization is the known comaximal factorization defined by McAdam and Swam.

Diagram of Properties (Anderson and Frazier)

Figure: Diagram of structures and τ -structures, when τ is divisive.

Definition of “ \leq ”

Definition

We say $\tau_1 \leq \tau_2$, if $\tau_1 \subseteq \tau_2$ as sets.

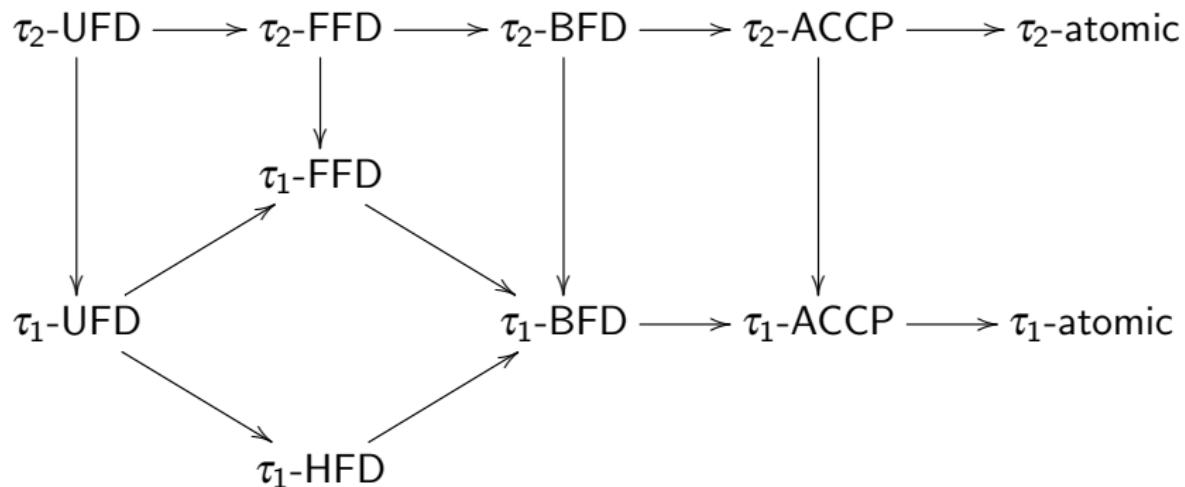
Theorem

Let D be an integral domain and τ_1, τ_2 be two relations on D^\sharp .

The following are equivalent:

- $\tau_1 \leq \tau_2$.
- For any $x, y \in D^\sharp$, $x\tau_1 y \Rightarrow x\tau_2 y$.
- Any τ_1 -factorization is a τ_2 -factorization.

Theorem (Ortiz)

Figure: Properties when $\tau_1 \subseteq \tau_2$ both divisive and τ_2 multiplicative

Theorem(Juett)

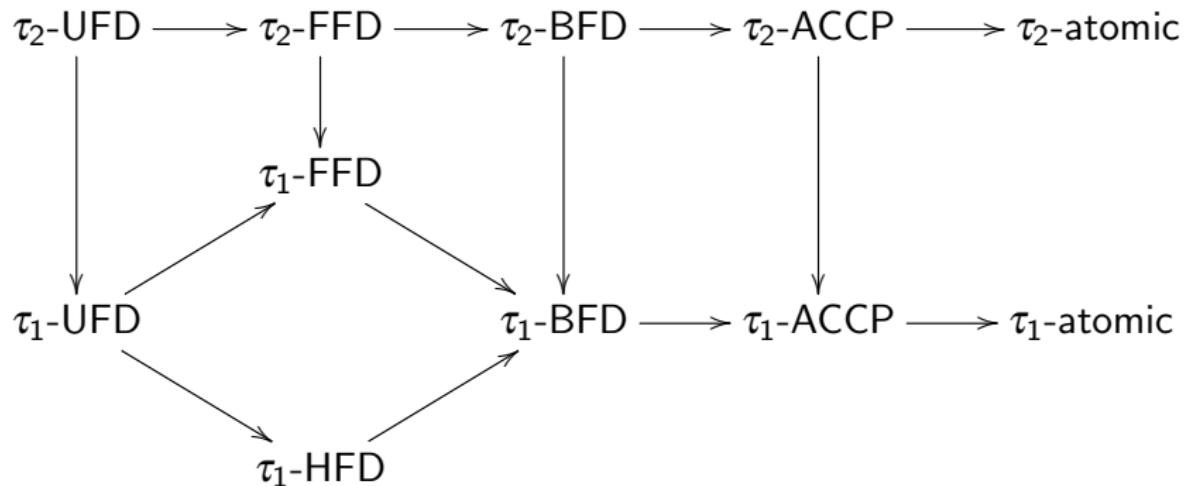


Figure: Properties when $\tau_1 \subseteq \tau_2$, τ_1 divisive and τ_2 refinable and associated-preserving

Outline

1 Notation and Definitions

- Definitions
- Relations

2 Equivalence relations

- Motivation
- Some results (Ortiz and Serna)

- Equivalence relations have historical precedent.
- Equivalence relation are less artificial relations.
- There is only one divisive equivalence relation τ_D .
- Divisive seems to be more-less understood to be good type of relation.

Outline

1 Notation and Definitions

- Definitions
- Relations

2 Equivalence relations

- Motivation
- Some results (Ortiz and Serna)

Diagram of Properties (Ortiz and Serna)

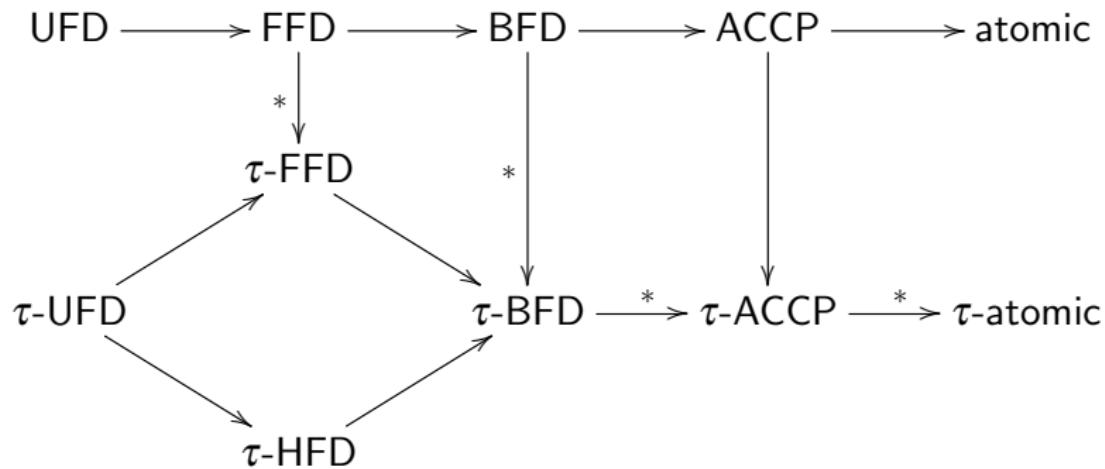


Figure: In this case τ is an associated-preserving multiplicative equivalence relation.

Associated-preserving closure of an equivalence relation

Definition

Let τ be an equivalence relation on D^\sharp . The associated-preserving closure of τ is denoted by τ' , which is the intersection of all associated-preserving equivalence relations on D^\sharp containing τ .

Theorem

Suppose τ (is unital) has the following property: for any $x, y \in D^\sharp$ and $\lambda \in U(D)$, if $x\tau y$, then $(\lambda x)\tau(\lambda y)$. Then

$$\tau' = \{(\mu_1 x, \mu_2 y) | (x, y) \in \tau \text{ and } \mu_1, \mu_2 \in U(D)\}$$

Theorem

If τ is unital equivalence relation, then we may assume τ is associated-preserving, because

- x has a τ' -factorization if and only if x has a τ -factorization
- $x |_{\tau'} y$ if and only if $x | \tau y$
- x is a τ' -atom if and only if x is a τ -atom
- D is τ' -atomic if and only if D is τ -atomic

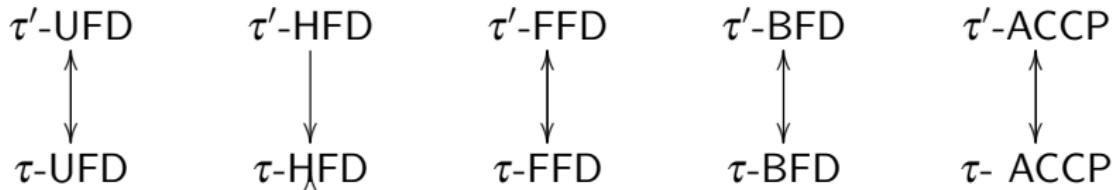


Figure: Properties of the associated-preserving equivalence unital relation

Example

- If you consider $\tau'_{(n)}$, then
- $\tau'_{(n)}$ is an equivalence relation with the "half" number of equivalence classes than $\tau_{(n)}$,
- $\tau'_{(n)}$ is always associated-preserving relation,
- $\tau'_{(n)}$ is multiplicative only if $n \in \{1, 2, 3, 6\}$ (it is also the multiplicative closure), and
- $\tau'_{(n)}$ coincides with Lanterman relation called $\mu_{(n)}$, presented at JMM 2013.
- Something about notions of $\tau_{(n)}$ -number theory.

- Thanks for the invitation.
- email reyes.ortiz@upr.edu