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Int(D)

Definition 1
Let D be a domain and K = q(D).

Int(D) = {f ∈ K [x ] | ∀ a ∈ D, f (a) ∈ D} ⊆ K [x ]

Remark 1
1 For all f ∈ K [x ], f = g

b where g ∈ D[x ] and b ∈ D \ {0}.

2 f = g
b is in Int(D) if and only if b | g(a) for all a ∈ D.

Examples
1 D[x ] ⊆ Int(D)

2
(x

n
)
= x(x−1)(x−2)···(x−n+1)

n! ∈ Int(Z)
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Int(D) cont’d

Int(D) is in general not a UFD e.g., in Int(Z)

x(x − 1)(x − 2)
2 =

x(x − 1)
2 (x − 2)

= x (x − 1)(x − 2)
2

= 3 x(x − 1)(x − 2)
6
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Factorization terms

Definition 2
Let 0 6= r 6∈ R×.

1 Two factorizations of

r = r1 · · · rn = s1 · · · sm

are called essentially the same if n = m and, after some
possible reordering, rj ∼ sj for 1 ≤ j ≤ m. Otherwise, the
factorizations are called essentially different.

2 The set of lengths of r is

L(r) = {n ∈ N | r = r1 · · · rn}

where r1, . . . , rn are irreducibles.
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What is known in Int(Z)

Theorem 1 (Frisch, 2013 )
Let 1 ≤ m1 ≤ m2 ≤ · · · ≤ mn ∈ N. Then there exists a polynomial
H ∈ Int(Z) with n essentially different factorizations of lengths
m1 + 1, . . . ,mn + 1.

Corollary 1
Every finite subset of N>1 is a set of lengths of an element of
Int(Z).

(Kainrath, 1999) Corollary 1 for Krull monoids with infinite
class group such that each divisor class contains a prime
divisor.

Sarah Nakato, TU Graz



What is known in Int(Z)

Proposition 1 (Frisch, 2013)
For every n ≥ 1 there exist irreducible elements H,G1, . . . ,Gn+1 in
Int(Z) such that xH(x) = G1(x) · · ·Gn+1(x).

(Geroldinger & Halter-Koch, 2006)
1 If θ : H −→ M is a transfer homomorphism, then;

(i) u ∈ H is irreducible in H if and only if θ(u) is irreducible in M.

(ii) For u ∈ H, L(u) = L(θ(u))

2 If u, v are irreducibles elements of a block monoid with u
fixed, then maxL(uv) ≤ |u|, where |u| ∈ N≥0.

3 Any monoid which allows a transfer homomorphism to a block
monoid must have the property in 2.

Monoids which allow transfer homomorphisms to block monoids
are called transfer Krull monoids.
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What is known in Int(Z)

Corollary 2
(Int(Z) \ {0}, •) is not a transfer Krull monoid.



New results

Motivation question: Are there other domains D such that Int(D)
is not a transfer Krull monoid?

If D is a Dedekind domain such that;
1 D has infinitely many maximal ideals and,
2 all the maximal ideals are of finite index.

Then Int(D) is not a transfer Krull monoid.

Examples of our Dedekind domains
1 Z

2 OK , the ring of integers of a number field K

3 The integral closure of Zp[x ] in a finite dimensional extension
of Zp(x)



New results

Let D be a Dedekind domain such that;
1 D has infinitely many maximal ideals and,
2 all the maximal ideals are of finite index.

Theorem 2
For every n ≥ 1 there exist irreducible elements H,G1, . . . ,Gn+1 in
Int(D) such that xH(x) = G1(x) · · ·Gn+1(x).

Theorem 3
Let 1 ≤ m1 ≤ m2 ≤ · · · ≤ mn ∈ N. Then there exists a polynomial
H ∈ Int(D) with n essentially different factorizations of lengths
m1 + 1, . . . ,mn + 1.
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