

Non-unique factorizations in rings of integer-valued polynomials on certain Dedekind domains

(Joint work with Sophie Frisch and Roswitha Rissner)

Sarah Nakato

February 21, 2018

Outline

- Preliminaries on $\text{Int}(D)$ and factorizations
- What is known in $\text{Int}(\mathbb{Z})$
- New results

Int(D)

Definition 1

Let D be a domain and $K = q(D)$.

$$\text{Int}(D) = \{f \in K[x] \mid \forall a \in D, f(a) \in D\} \subseteq K[x]$$

Remark 1

- 1 For all $f \in K[x]$, $f = \frac{g}{b}$ where $g \in D[x]$ and $b \in D \setminus \{0\}$.
- 2 $f = \frac{g}{b}$ is in $\text{Int}(D)$ if and only if $b \mid g(a)$ for all $a \in D$.

Examples

- 1 $D[x] \subseteq \text{Int}(D)$
- 2 $\binom{x}{n} = \frac{x(x-1)(x-2)\cdots(x-n+1)}{n!} \in \text{Int}(\mathbb{Z})$

Int(D) cont'd

- Int(D) is in general not a UFD e.g., in Int(\mathbb{Z})

$$\begin{aligned}\frac{x(x-1)(x-2)}{2} &= \frac{x(x-1)}{2} (x-2) \\ &= x \frac{(x-1)(x-2)}{2} \\ &= 3 \frac{x(x-1)(x-2)}{6}\end{aligned}$$

Factorization terms

Definition 2

Let $0 \neq r \notin R^\times$.

- ① Two factorizations of

$$r = r_1 \cdots r_n = s_1 \cdots s_m$$

are called **essentially the same** if $n = m$ and, after some possible reordering, $r_j \sim s_j$ for $1 \leq j \leq m$. Otherwise, the factorizations are called **essentially different**.

- ② The **set of lengths** of r is

$$L(r) = \{n \in \mathbb{N} \mid r = r_1 \cdots r_n\}$$

where r_1, \dots, r_n are irreducibles.

What is known in $\text{Int}(\mathbb{Z})$

Theorem 1 (Frisch, 2013)

Let $1 \leq m_1 \leq m_2 \leq \dots \leq m_n \in \mathbb{N}$. Then there exists a polynomial $H \in \text{Int}(\mathbb{Z})$ with n essentially different factorizations of lengths $m_1 + 1, \dots, m_n + 1$.

Corollary 1

Every finite subset of $\mathbb{N}_{>1}$ is a set of lengths of an element of $\text{Int}(\mathbb{Z})$.

(Kainrath, 1999) Corollary 1 for Krull monoids with infinite class group such that each divisor class contains a prime divisor.

What is known in $\text{Int}(\mathbb{Z})$

Proposition 1 (Frisch, 2013)

For every $n \geq 1$ there exist irreducible elements H, G_1, \dots, G_{n+1} in $\text{Int}(\mathbb{Z})$ such that $xH(x) = G_1(x) \cdots G_{n+1}(x)$.

(Geroldinger & Halter-Koch, 2006)

- ① If $\theta : H \longrightarrow M$ is a transfer homomorphism, then;
 - (i) $u \in H$ is irreducible in H if and only if $\theta(u)$ is irreducible in M .
 - (ii) For $u \in H$, $L(u) = L(\theta(u))$
- ② If u, v are irreducibles elements of a block monoid with u fixed, then $\max L(uv) \leq |u|$, where $|u| \in \mathbb{N}_{\geq 0}$.
- ③ Any monoid which allows a transfer homomorphism to a block monoid must have the property in 2.

Monoids which allow transfer homomorphisms to block monoids are called **transfer Krull monoids**.

What is known in $\text{Int}(\mathbb{Z})$

Corollary 2

$(\text{Int}(\mathbb{Z}) \setminus \{0\}, \bullet)$ is not a transfer Krull monoid.

New results

Motivation question: Are there other domains D such that $\text{Int}(D)$ is not a transfer Krull monoid?

If D is a Dedekind domain such that;

- ① D has infinitely many maximal ideals and,
- ② all the maximal ideals are of finite index.

Then $\text{Int}(D)$ is not a transfer Krull monoid.

Examples of our Dedekind domains

- ① \mathbb{Z}
- ② \mathcal{O}_K , the ring of integers of a number field K
- ③ The integral closure of $\mathbb{Z}_p[x]$ in a finite dimensional extension of $\mathbb{Z}_p(x)$

New results

Let D be a Dedekind domain such that;

- ① D has infinitely many maximal ideals and,
- ② all the maximal ideals are of finite index.

Theorem 2

For every $n \geq 1$ there exist irreducible elements H, G_1, \dots, G_{n+1} in $\text{Int}(D)$ such that $xH(x) = G_1(x) \cdots G_{n+1}(x)$.

Theorem 3

Let $1 \leq m_1 \leq m_2 \leq \cdots \leq m_n \in \mathbb{N}$. Then there exists a polynomial $H \in \text{Int}(D)$ with n essentially different factorizations of lengths $m_1 + 1, \dots, m_n + 1$.