

Lorenzo Guerrieri

DIRECTED UNIONS OF LOCAL
QUADRATIC AND MONOIDAL
TRANSFORMS AND GCD DOMAINS

Joint work with W. Heinzer, B. Olberding and M. Toeniskoetter.

Conference on Rings and Factorizations - Graz February 2018

0. Introduction.

Let (R, \mathfrak{m}) be a regular local ring of dimension $d \geq 2$ and let $x \in \mathfrak{m} \setminus \mathfrak{m}^2$. A local quadratic transform (LQT) of R is an overring of the form

$$R_1 = R \left[\frac{\mathfrak{m}}{x} \right]_{\mathfrak{m}_1}$$

where \mathfrak{m}_1 is a maximal ideal of $R[\frac{\mathfrak{m}}{x}]$ lying over \mathfrak{m} .

R_1 is a regular local ring of dimension

$$d - \text{trdeg}_{\frac{R}{\mathfrak{m}}} \left(\frac{R_1}{\mathfrak{m}_1} \right)$$

and its ideal $\mathfrak{m}R_1 = xR_1$ is principal.

Let V be a valuation overring of R such that $\mathfrak{m}_V \cap R = \mathfrak{m}$. There exists a unique sequence of regular local rings

$$R = R_0 \subseteq R_1 \subseteq \dots \subseteq R_n \subseteq R_{n+1} \subseteq \dots \subseteq V$$

such that R_{n+1} is a LQT of R_n , $\forall n$.

Theorem(Abyhankar '56)

The following assertions are equivalent:

- (1) $\exists n$ such that $R_n = R_{n+1} = \dots = V$.
- (2) V is the order valuation ring of R_{n-1} .
- (3) V is a prime divisor of R (i.e. $\text{trdeg}_{\frac{R}{\mathfrak{m}}}\left(\frac{V}{\mathfrak{m}_V}\right) = d - 1$).

Assume $\text{trdeg}_{\frac{R}{\mathfrak{m}}}\left(\frac{V}{\mathfrak{m}_V}\right) = 0$ and define the ring $S = \bigcup_{n \geq 0}^{\infty} R_n \subseteq V$.

S is called a quadratic Shannon Extension of R and it is a local domain with maximal ideal $\mathfrak{m}_S = \bigcup_{n \geq 0}^{\infty} \mathfrak{m}_n$.

Theorem(Abyhankar '56)

If $d = 2$, then $S = V$.

Example(Shannon '73)

Let $d = 3$ and $\mathfrak{m} = (x, y, z)R$.

(1) Define for $n \geq 1$, $R_n = R_{n-1} \left[\frac{y}{x^n}, \frac{z}{x^n} \right]_{(x, \frac{y}{x^n}, \frac{z}{x^n})}$ and $S = \bigcup_{n \geq 0}^{\infty} R_n$. S is a **non archimedean** domain of dimension 3 with principal maximal ideal $\mathfrak{m}_S = xS$. Since $\frac{y}{z}, \frac{z}{y} \notin S$, S is not a valuation ring.

(2) Let V be a rank 1 valuation overring of R such that $v(z) > v(x) + v(y)$. Then the Shannon extension S along V is an **archimedean** domain of dimension 2 and $\mathfrak{m}_S = \mathfrak{m}_S^2$.

Shannon's examples motivated the following recent articles (2014-2017) and further research:

- Ideal theory of infinite directed unions of local quadratic transforms
(W. Heinzer, K. A. Loper, B. Olberding, H. Schoutens and M. Toeniskoetter)
- Asymptotic properties of infinite directed unions of local quadratic transforms
(W. Heinzer, B. Olberding and M. Toeniskoetter)
- Directed unions of local quadratic transforms of a regular local ring and pullbacks,
(-, W. Heinzer, B. Olberding and M. Toeniskoetter)

1. Properties of quadratic Shannon extensions.

Let S be a quadratic Shannon extension of a regular local ring R . Then:

- The maximal ideal of S , \mathfrak{m}_S is either **principal** or **idempotent**.
- Any non maximal prime ideal P of S is such that $S_P = (R_n)_{P \cap R_n}$ for $n \gg 0$.
- For any $n \gg 0$, set $R_{n+1} = R_n \left[\frac{\mathfrak{m}_n}{x_n} \right]_{\mathfrak{m}_{n+1}}$. Then $x_n S$ is an \mathfrak{m}_S -primary ideal.

- S is Noetherian if and only if it is a DVR.
- Let $x \in S$ be an \mathfrak{m}_S -primary element. The ring $T = S[\frac{1}{x}]$ is a Noetherian UFD and, when S is not a DVR, it is the minimal proper Noetherian overring of S . We call T the Noetherian hull of S .

Let V_n be the order valuation ring of R_n . We call the ring

$$V_B := \lim_{n \rightarrow \infty} V_n = \bigcup_{n \geq 0} \bigcap_{i \geq n} V_i$$

the Boundary Valuation ring of S . A useful property is that

$$S = T \cap V_B.$$

S is a valuation domain if and only if either $\dim(S) = 1$ or $\dim(S) = 2$ and the value group of V_B is $\mathbb{Z} \oplus G$ with $G \leq \mathbb{Q}$.

Let W be the rank 1 valuation overring of V_B . It is possible to characterize the complete integral closure S^* of S :

- When S is non archimedean the complete integral closure S^* of S is equal to the Noetherian hull T .
- When S is archimedean, the complete integral closure of S is

$$S^* = (\mathfrak{m}_S :_{Q(R)} \mathfrak{m}_S) = W \cap T.$$

It follows that $S = S^*$ if and only if V_B has rank 1.

2. GCD property for quadratic Shannon extensions

An integral domain D is a **GCD domain** if for every $a, b \in D$ the ideal $aD \cap bD$ is **principal**.

Theorem

Let S be a quadratic Shannon extension of a regular local ring R . The following assertions are equivalent:

- (1) S is a **GCD** domain.
- (2) S is a **valuation** domain.

Proof (sketch).

a) Non archimedean case:

Let S be a non archimedean Shannon extension and let $x \in S$ be an \mathfrak{m}_S -primary element. Then, it is proved that the ideal $Q = \bigcap_{n \geq 0} x^n S$ is a nonzero prime ideal and any non maximal prime ideal of S is contained in Q . Hence S occurs in the following pullback diagram:

$$\begin{array}{ccc} S & \longrightarrow & \frac{S}{Q} \\ \downarrow & & \downarrow \\ S_Q & \longrightarrow & \kappa(Q) \end{array}$$

where S/Q is a rank 1 valuation domain and S_Q is equal to the Noetherian hull T .

By a theorem of Gabelli and Houston (in [Coherentlike conditions in pullbacks '97](#)), if S is a GCD domain, S_Q is a valuation domain. Since also S/Q is a valuation domain, S itself is a valuation domain.

b) [Archimedean case but not completely integrally closed:](#)

Assume S not a valuation domain. Hence \mathfrak{m}_S is not finitely generated. Take $\theta \in S^* \setminus S$. Since $S^* = (\mathfrak{m}_S :_{Q(R)} \mathfrak{m}_S)$,

$$\mathfrak{m}_S \subseteq \theta^{-1}\mathfrak{m}_S \cap S \subseteq \theta^{-1}S \cap S.$$

But $\theta \notin S$ and hence $\mathfrak{m}_S = \theta^{-1}S \cap S$ and therefore S is not a GCD domain.

c) Archimedean case and completely integrally closed:

Assume S not a valuation domain. Hence $S = T \cap W$ with W a rank 1 valuation domain.

Using properties of the Boundary valuation ring, we get that

$\forall \epsilon > 0$, $\exists x \in \mathfrak{m}_S$ such that $0 < w(x) < \epsilon$.

Take $f, g \in S$ such that $fT, gT \subsetneq T$ and $fT \cap gT = fgT$. Then, assuming $w(f) \geq w(g)$, define:

$$I := fS \cap gS = (fT \cap gT) \cap \{a \in S \mid w(a) > w(f)\}.$$

Hence, given $a \in I$, it is possible to find $x \in \mathfrak{m}_S$ such that $0 < w(x) < w(\frac{a}{f})$. Thus $\frac{a}{x} \in I$ and $I = \mathfrak{m}_S I$. It follows that I is not finitely generated and S not a GCD domain.

3. Monoidal Shannon extensions.

Let (R, \mathfrak{m}) be a regular local ring of dimension $d \geq 3$ and let \mathfrak{p} be a regular prime ideal of R (i.e. R/\mathfrak{p} is a regular local ring) with $\text{ht}\mathfrak{p} > 1$. Take $x \in \mathfrak{p} \setminus \mathfrak{p}^2$. A **local monoidal transform** of R is an overring of the form

$$R_1 = R \left[\frac{\mathfrak{p}}{x} \right]_{\mathfrak{m}_1}$$

where \mathfrak{m}_1 is a maximal ideal of $R[\frac{\mathfrak{p}}{x}]$ lying over \mathfrak{m} .

R_1 is again a regular local ring and its ideal $\mathfrak{p}R_1 = xR_1$ is principal.

Define for $n \geq 1$, $R_{n+1} = R_n[\frac{\mathfrak{p}_n}{x_n}]_{\mathfrak{m}_{n+1}}$ and, assuming $\dim(R_n) = d$ for every n , we call the union $S = \bigcup_{n \geq 0}^{\infty} R_n$ a **monoidal Shannon extension** of R .

Example

Let $d = 3$ and $\mathfrak{m} = (x, y, z)R$.

Let $\mathfrak{p} = (x, y)R$ and $R_1 = R \left[\frac{y}{x} \right]_{(x, z, \frac{y}{x})}$. Then let $\mathfrak{p}_1 = (z, \frac{y}{x})R_1$ and $R_2 = R_1 \left[\frac{y}{xz} \right]_{(x, z, \frac{y}{xz})}$.

Following this pattern, define for $k \geq 1$,

$$R_{2k} = R_{2k-1} \left[\frac{y}{x^k z^k} \right]_{(x, z, \frac{y}{x^k z^k})} \text{ and } R_{2k+1} = R_{2k} \left[\frac{y}{x^{k+1} z^k} \right]_{(x, z, \frac{y}{x^{k+1} z^k})}.$$

$S := \bigcup_{n \geq 0}^{\infty} R_n$ is a domain of dimension 3 with maximal ideal $\mathfrak{m}_S = (x, z)S$. The ideals xS and zS are prime ideals of height 2 and the ideal $P = R_y R \cap S$ is a non finitely generated prime ideal of height 1. The Noetherian hull of S is the ring $T = S[\frac{1}{xz}]$.

Since $\frac{x}{z}, \frac{z}{x} \notin S$, S is not a valuation domain. But S turns out to be a GCD domain. This follows from:

Theorem

Let D be an integral domain and $x \in D$ a nonzero prime element. The following assertions are equivalent:

- (1) D is a GCD domain.
- (2) $D[\frac{1}{x}]$ and D_{xD} are GCD domains.

Corollary

Let D be an integral domain and $x_1, \dots, x_n \in D$ nonzero and non associate prime elements. Call $x := x_1 \cdots x_n$.

If $D[\frac{1}{x_i}]$ and $D_{x_i D}$ are GCD domains $\forall i = 1, \dots, n$, then D is a GCD domain.

Proof of the theorem (sketch).

When D is a GCD domain, it is clear that $D[\frac{1}{x}]$ and D_{xD} are GCD domains.

Conversely take $a, b \in D$ and call $I = aD \cap bD$ and $J = (a, b)D$. If D_{xD} is a GCD domain, the already cited result of Gabelli and Houston implies that D_{xD} is a valuation domain.

Hence, without loss of generality, we may assume $a \notin xD$ (by eventually multiplying I for some element in J^{-1}). We need to show

$$I = abJ^{-1} = ab\left(\frac{1}{a}D \cap \frac{1}{b}D\right)$$

is principal.

This is equivalent to say that $K := aJ^{-1} = D \cap \frac{a}{b}D$ is principal.
 We get this showing that for some $y \in D$,

$$K = KD \left[\frac{1}{x} \right] \cap D = yD.$$

The first equality follows since, for $z \in KD \left[\frac{1}{x} \right] \cap D$, $zb = \frac{ad}{x^n} \in aD$ (with $d \in D$ and $n \geq 0$) since $a \notin xD$ and x is prime.

The second equality follows since $D \left[\frac{1}{x} \right]$ is a GCD domain and K is intersection of principal ideals.

Thanks for your attention!