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Introduction

Online reference: https://arxiv.org/abs/1711.06961

Motivation: A realization theorem for sets of lengths in numerical
monoids by Alfred Geroldinger and Wolfgang Schmid.

Main Results:
© An atomic Puiseux monoid with full system of sets of lengths
is constructed.

@ The Characterization Problem for the family of non-finitely
generated Puiseux monoids is answered negatively.

© A family of Puiseux monoids with all their sets of lengths
having extremal cardinality (one or infinity) is constructed.

© The intersection of the systems of sets of lengths of all
nontrivial atomic Puiseux monoids is found.

© We show that finding L(2) in the elementary primary Puiseux
monoid is as hard as answering the Goldbach’s conjecture.
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© Preliminary

© First Main Result: A Puiseux monoid with full system of
sets of lengths

© Consequences of First Main Result

@ Second Main Result: A Puiseux monoid whose sets of
lengths have extremal cardinality

© Consequences of Second Main Result
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What is a Puiseux monoid?

Definition (Puiseux monoid)

A Puiseux monoid is an additive submonoid of QQ consisting of
nonnegative rational numbers.

Proposition (Gilmer): Puiseux monoids account (up to
isomorphism) for any possible nontrivial additive submonoid of Q
that is not a group.

Observations:

@ Not every Puiseux monoid is atomic: (1/2" | n € N).

@ There are atomic Puiseux monoids containing infinitely many
atoms (i.e., irreducibles): (1/p | p is prime).

@ There are atomic Puiseux monoids containing non-atomic
submonoids: (1/(2Pp) | p is prime) and its submonoid
(1/2"| n € N).

Felix Gotti Sets of Lengths of Puiseux Monoids



Puiseux monoids and numerical monoids

Definition (numerical monoid)

A numerical monoid is a cofinite submonoid of (Np, +).

Every numerical monoid is naturally a Puiseux monoid and the
next characterization follows easily.

Observation: A nontrivial Puiseux monoid M is isomorphic to a
numerical monoid if and only if M is finitely generated.

Remark: The family of Puiseux monoids generalizes that one of
numerical monoids.
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Why should we care about Puiseux monoids?

© They are nice, beautiful, and fun.
© They are a useful source of counter/examples to the service of
commutative ring theory and factorization theory:

o Puiseux monoids were crucial to find the first example of an
atomic integral domain that fails to satisfy the ACCP (this is
due to Anne Grams);

o Anderson-Anderson-Zafrullah use Puiseux monoids to build an
example of an ACCP domain that is not a bounded
factorization domain (BFD).

o Anderson-Anderson-Zafrullah use Puiseux monoids to build an
example of a BFD whose integral closure is not a BFD.

© They provide a new playground to investigate potential
pathological behavior of arithmetic of factorizations as most
Puiseux monoids are neither C-monoids nor transfer Krull.

© They facilitate the study of numerical monoids by providing a
common universe where infinitely many rescaled copies of
numerical monoids coexist.
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Notation: Let N:={1,2,...} and P, := {S C N>> : |§| < o0}
Assumption: Each monoid here is assumed to be commutative,
cancellative, and reduced. Let M be a monoid.

o Let A(M) be the set of atoms (i.e., irreducibles) of M.

o Let Z(M) denote the factorization monoid of M, that is the
free commutative monoid on A(M).

Let ¢: Z(M) — M be the only monoid homomorphism
satisfying ¢(a) = a for all a € A(M).

For x € M, we set Z(x) := ¢~ ().

If z=aj...ax € Z(M), then |z| := k is called the length of z.
The set of lengths of x € M is L(x) :={|z| : z € Z(x)}.

The system of sets of lengths of M is
L(M) = {L(x) : x € M}.
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Monoids with full system of sets of lengths

Definition (full system of sets of lengths)

A BF-monoid M is said to have full system of sets of lengths if

L(M) = {{0}, {1}} U Psin.

Theorem (Kainrath, 1999)

Let M be Krull monoid, and let G be the class group of M. If G is
infinite and every class of G contains at least a prime, then M has
full system of sets of lengths.

Definition: The system of sets of lengths of an integral domain R
is L(R*), where R® denotes the multiplicative monoid of R.

Theorem (Frisch-Nakato-Rissner, 2017)

If Ok is the ring of integers of a given number field K, then the
domain Int(Ok) has full system of sets of lengths.
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A realization theorem for sets of lengths

Theorem (Geroldinger-Schmid, 2017)

Let L C N>» be a finite nonempty set and f: L — N a map. Then

there exist a numerical monoid M and a squarefree element x € M
such that the following conditions hold.:

QO Lx)=L;
Q |Zi(x)| =f(£) forevery (€ L.
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Puiseux monoid with full system of sets of lengths

Theorem (G., 2017)

[First Main Result] There exists an atomic Puiseux monoid with
full systems of sets of lengths.

Sketch of proof:
@ Number the sets in Py, say 51,5, . ...

@ For each n € N, use Geroldinger-Schmid Theorem to find a
numerical monoid M, C Q> and x, € M, such that
L(xn) = Sp.

© Then rescale M, by (p, — 1)/pn (for a large prime p,) such
that A(M,) ¢ M,_1 for any n > 2.

© Finally, take M to be the smallest Puiseux monoid containing
M,, for each n € N. O
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A consequence of our First Main Result

We can use our first main result to somehow generalize the
Geroldinger-Schmid Theorem.

Question: Given S1,5,...,S, C Pg,, can we find a numerical
monoid M and elements xi, x2, ..., x, € M such that L(x;) = 5;?

Corollary (First Main Result)

For all 51,55, ...,S, C P4y, there exist a numerical monoid M and
X1,X2,...,Xn € M such that L(x;) = S;.
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The Characterization Problem

Characterization Problem: Given a family F of atomic monoids,
does L(M) = L(M') for M, M’ € F always imply that M = M'?

If F is some family of Krull monoid, we have the next conjecture.

Conjecture (The Characterization Problem for Krull monoids)

Let M and M’ be Krull monoids with respective finite abelian class
groups G and G’ each of their classes contains at least one prime
divisor. Assume also that the Davenport constant D(G) > 4. If
L(M) = L(M"), then M = M'.

If F is the family of numerical monoid, we have a negative answer.

Theorem (Amos-Chapman-Hine-Paixao, 2007)

There are distinct (and so non-isomorphic) numerical monoids with
the same system of sets of lengths.
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The Characterization Problem for Pusieux monoids

Lemma 1: The homomorphisms of Puiseux monoids are precisely
those given by rational multiplication.

If F consists of all non-finitely generated atomic Puiseux monoids,
we still have a negative answer to the Characterization Problem.

Corollary (First Main Result)

There exist two non-isomorphic non-finitely generated atomic
Puiseux monoids with the same system of sets of lengths.

Sketch of proof:
© Take P; and P, to be two disjoint infinite sets of primes.
@ Construct a Puiseux monoid M; as in the proof of First Main
Result by considering only primes in P; when rescaling.
© Construct a Puiseux monoid M as in the proof of First Main
Result by considering only primes in P, when rescaling.
© Finally, use Lemma 1 above to show that M; 22 M. O
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Second Main Result

Corollary (First Main Result)
There is an atomic Puiseux monoid M such that Pg, C L(M).

Our second main result complements our first main result as
condition Pg,, C L(M) is replace by Pg, N L(M) = 0.

Theorem (G., 2017)

[Second Main Result] There is an atomic Puiseux monoid M such
that Pg, N L(M) = 0, which implies that

{IL(x)| : x € M} = {1, 00}.
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Bifurcus and anti-bifurcus Puiseux monoids

Definition: An atomic monoid M is bifurcus if 2 € L(x) for every
x e M*\ A(M).

Theorem (G.-O’Neill, 2017)
There exists a bifurcus Puiseux monoid.

Question: Do anti-bifurcus Puiseux monoids exist?

Definition: An atomic monoid M is anti-bifurcus if 2 ¢ L(x) for
every x € M such that |L(x)| < oc.

Corollary (Second Main Theorem)

There exists an anti-bifurcus Puiseux monoid.
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Intersection of systems of sets of lengths of
numerical monoids

Theorem (Geroldinger-Schmid, 2017)
We have

(M £(m) = {{o}, {1}, {2}},

where the intersection is taken over all numerical monoids
M C No. More precisely, for every s € Z>g¢, we have

M £M) = {{o}, {1}.{2}},

|A(M)|=s

and, for every s € {2,3,4,5}, we have

ﬂ E(M) = {{0}’{1}7{2}7{3}}‘

|A(M)|=s

y

Felix Gotti Sets of Lengths of Puiseux Monoids




Intersection of systems of sets of lengths of Puiseux
monoids

Corollary (Second Main Result)
We have

() £(M) = {{0},{1}},

where the intersection is taking over all nontrivial atomic Puiseux
monoids.
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Relation to Goldbach’s conjecture

Definition: A Goldbach’s number is a positive even integer that
can be expressed as the sum of two odd primes. Let G denote the
set of Goldbach’s numbers.

Conjecture (Goldbach, 1742)
G= {2” | nec NZQ}.

Theorem (Helfgott, 2013)
Every odd n > 7 can be written as the sum of three prime numbers.
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A ‘simple’ set of lengths and the Goldbach’s
conjecture

Definition (elementary primary Puiseux monoid)

We call the monoid E = (1/p | p is prime) the elementary primary
Puiseux monoid.

@ 2cE;
o E is (hereditarily) atomic;

@ E is not a BF-monoid.

Proposition (G., 2017)
Le(2) = G.
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End of Presentation

THANK YOU!
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