

FROM PÓLYA FIELDS TO PÓLYA GROUPS

Jean-Luc Chabert Université de Picardie France

Graz, February 2018

ONE CENTURY AGO: THE NOTION OF PÓLYA FIELD

Pólya & Ostrowski. Let K be a number field and

$$\text{Int}(\mathcal{O}_K) = \{f(X) \in K[X] \mid f(\mathcal{O}_K) \subseteq \mathcal{O}_K\}.$$

Does this \mathcal{O}_K -module admits a basis with one polynomial of each degree?

EXAMPLE ($\text{Int}(\mathbb{Z})$: $\binom{X}{n} = \frac{X(X-1)\cdots(X-n+1)}{n!}$ $(n \geq 0)$.)

THEOREM (PÓLYA & OSTROWSKI 1919)

$\text{Int}(\mathcal{O}_K)$ admits such a basis if and only if for every positive integer q the product of all the maximal ideals of \mathcal{O}_K with norm q is a principal ideal.

DEFINITION (ZANTEMA, 1982)

A Pólya field is a number field K such that $\text{Int}(\mathcal{O}_K)$ admits a basis with one polynomial of each degree, equivalently, such that

$$\forall q \quad \Pi_q(K) = \prod_{\mathfrak{p} \in \text{Max}(\mathcal{O}_K), |\mathcal{O}_K/\mathfrak{p}|=q} \mathfrak{p} \text{ is principal.}$$

TWENTY YEARS AGO: PÓLYA GROUPS

Integer-valued polynomials, 1997:

The Pólya group is a measure of the obstruction for K to be a Pólya field.

DEFINITION

The Pólya group of a number field K is the subgroup $\mathcal{P}o(K)$ of the class group $\mathcal{CI}(K) = \mathcal{I}_K/\mathcal{P}_K$ generated by the classes of the $\Pi_q(K)$'s.

$$K \text{ is a Pólya field} \Leftrightarrow \mathcal{P}o(K) = \{1\}$$

PROPOSITION (HILBERT, 1897)

Let $K = \mathbb{Q}(\sqrt{d})$ and let t be the number of ramified primes. Then,

$$|\mathcal{P}o(K)| = \begin{cases} 2^{t-2} & \text{if } K \text{ is real and } N(\mathcal{O}_K^\times) = \{1\} \\ 2^{t-1} & \text{in the other cases} \end{cases}$$

Application: the list of the quadratic Pólya number fields (cf. Zantema).

The aim of my talk

K is a Pólya field $\Leftrightarrow \mathcal{P}o(K) = \{1\}$

Each assertion about Pólya groups implies a result concerning Pólya fields.

PROPOSITION

If $[K : \mathbb{Q}] = p$ (p odd) with t ramified primes, then $|\mathcal{P}o(K)| = p^{t-1}$

COROLLARY

If $[K : \mathbb{Q}] = p$ (p odd), then: K is Pólya \Leftrightarrow only one prime is ramified.

CONJECTURE

An assertion on Pólya fields is the evidence of a statement on Pólya groups

EXAMPLE (ZANTEMA)

If K/\mathbb{Q} is a non-galoisian cubic extension, then: K is Pólya $\Leftrightarrow h_K = 1$.

The aim of my talk

K is a Pólya field $\Leftrightarrow \mathcal{P}o(K) = \{1\}$

Each assertion about Pólya groups implies a result concerning Pólya fields.

PROPOSITION

If $[K : \mathbb{Q}] = p$ (p odd) with t ramified primes, then $|\mathcal{P}o(K)| = p^{t-1}$

COROLLARY

If $[K : \mathbb{Q}] = p$ (p odd), then: K is Pólya \Leftrightarrow only one prime is ramified.

An assertion on Pólya fields is the evidence of a statement on Pólya groups

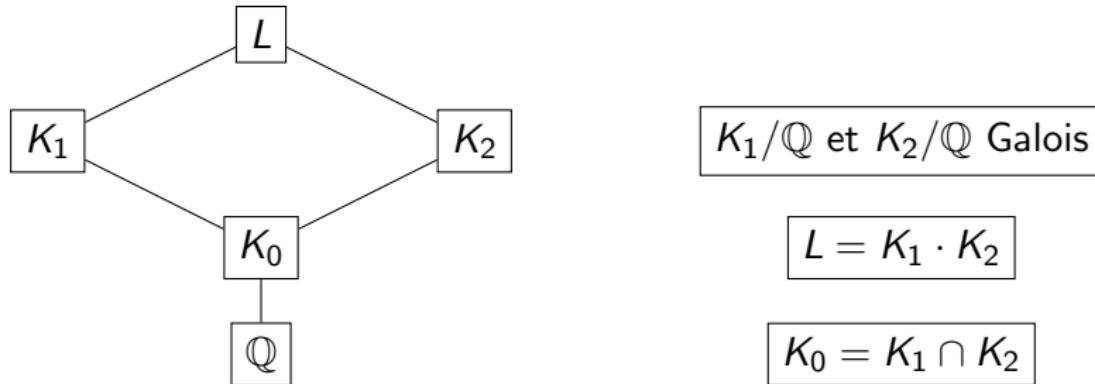
EXAMPLE (ZANTEMA)

If K/\mathbb{Q} is a non-galoisian cubic extension, $\mathcal{P}o(K) = \{1\} \Leftrightarrow \mathcal{CI}(K) = \{1\}$

CONJECTURE

If K/\mathbb{Q} is a non-galoisian cubic extension, then $\mathcal{P}o(K) = \mathcal{CI}(K)$.

Galoisian extensions



PROPOSITION (ZANTEMA) (HYP: $\forall p \ e_p(K_1/\mathbb{Q}), e_p(K_2/\mathbb{Q}) = 1$)

K_1 and K_2 Pólya $\Rightarrow L$ Pólya

Notation: $\varepsilon_{K_i}^L : \overline{\mathfrak{a}} \in \mathcal{CI}(K_i) \mapsto \overline{\mathfrak{a} \mathcal{O}_L} \in \mathcal{CI}(L)$ $\varepsilon_{K_i}^L(\mathcal{P}o(K_i)) \subseteq \mathcal{P}o(L)$

PROPOSITION (REVISITED) (HYP: $\forall p \ e_p(K_1/\mathbb{Q}), e_p(K_2/\mathbb{Q}) = 1$)

$$\mathcal{P}o(L) = \varepsilon_{K_1}^L(\mathcal{P}o(K_1)) + \varepsilon_{K_2}^L(\mathcal{P}o(K_2))$$

The reverse implication

PROPOSITION (ZANTEMA)

If K_0 is Pólya and if $([K_1 : K_0], [K_2 : K_0]) = 1$, then:

$$L \text{ Pólya} \Leftrightarrow K_1 \text{ and } K_2 \text{ Pólya}$$

PROPOSITION (REVISITED)

If K_0 is Pólya and if $([K_1 : K_0], [K_2 : K_0]) = 1$, then:

$$\mathcal{P}o(L) \simeq \mathcal{P}o(K_1) \oplus \mathcal{P}o(K_2)$$

PROPOSITION (ZANTEMA)

If $[K_1 : K_0], [K_2 : K_0]$ and $[K_0 : \mathbb{Q}]$ are pairwise relatively prime, then:

$$L \text{ Pólya} \Leftrightarrow K_1 \text{ and } K_2 \text{ Pólya}$$

PROPOSITION (REVISITED)

If $[K_1 : K_0], [K_2 : K_0]$ and $[K_0 : \mathbb{Q}]$ are pairwise relatively prime, then:

$$\mathcal{P}o(L) \simeq \mathcal{P}o(K_0) \oplus \mathcal{P}o(K_1)/\varepsilon_{K_0}^{K_1}(\mathcal{P}o(K_0)) \oplus \mathcal{P}o(K_2)/\varepsilon_{K_0}^{K_2}(\mathcal{P}o(K_0))$$

Non Galoisian extensions

$[K : \mathbb{Q}] = n \geq 3$, N_K normal closure of K over \mathbb{Q} , $G = \text{Gal}(N_K/\mathbb{Q})$

THEOREM (ZANTEMA)

If $G = S_n$ ($n \neq 4$), or $G = A_n$ ($n \neq 3, 5$), or G is a Frobenius group, the following assertions are equivalent:

- (i) all the $\Pi_{p^f}(K)$ where p is not ramified are principal
- (ii) all the $\Pi_q(K)$ are principal, i.e., K is Pólya.
- (iii) all the ideals of \mathcal{O}_K are principal, i.e., $h_K = 1$.

$$\mathcal{P}o(K) = \langle \overline{\Pi_{p^f}(K)} \mid p \in \mathbb{P}, f \in \mathbb{N}^* \rangle \quad \mathcal{P}o(K)_{nr} = \langle \overline{\Pi_{p^f}(K)} \mid p \text{ not ramif.} \rangle$$
$$\mathcal{P}o(K)_{nr} \subseteq \mathcal{P}o(K) \subseteq \mathcal{C}I(K).$$

THEOREM (ZANTEMA'S THEOREM IN OTHER WORDS)

If $G = S_n$ ($n \neq 4$), or $G = A_n$ ($n \neq 3, 5$), or G is a Frobenius group, then

$$\mathcal{P}o(K)_{nr} = \{1\} \Leftrightarrow \mathcal{P}o(K) = \{1\} \Leftrightarrow \mathcal{C}I(K) = \{1\}$$

Non Galoisian extensions

$[K : \mathbb{Q}] = n \geq 3$, N_K normal closure of K over \mathbb{Q} , $G = \text{Gal}(N_K/\mathbb{Q})$

THEOREM (ZANTEMA)

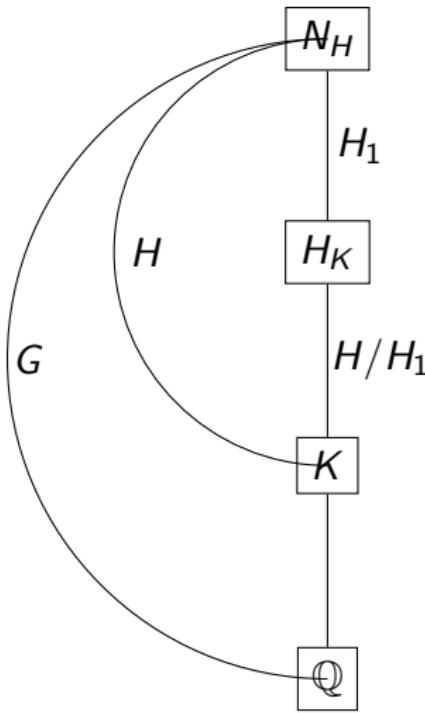
If $G = S_n$ ($n \neq 4$), or $G = A_n$ ($n \neq 3, 5$), or G is a Frobenius group, then

$$\mathcal{P}o(K)_{nr} = \{1\} \Leftrightarrow \mathcal{P}o(K) = \{1\} \Leftrightarrow \mathcal{CI}(K) = \{1\}$$

MY UNREASONABLE CONJECTURE

If $G = S_n$ ($n \neq 4$), or $G = A_n$ ($n \neq 3, 5$), or G is a Frobenius group, then

$$\mathcal{P}o(K)_{nr} = \mathcal{P}o(K) = \mathcal{CI}(K)$$



N_H normal closure of H_K over \mathbb{Q}

H_K class field of K

$H/H_1 = \text{Gal}(H_K/K) \simeq \mathcal{CI}(K)$

$\gamma_K : \bar{a} \in \mathcal{CI}(K) \mapsto (a, H_K/K) \in \text{Gal}(H_K/K)$

Artin's symbol $(a, H_K/K)$ is defined linearly from its values on the primes

$\sigma = (\mathfrak{p}, H_K/K)$ characterized by $\sigma(a) \equiv a^q \pmod{\mathfrak{p}\mathcal{O}_{H_K}}$ with $q = |\mathcal{O}_K/\mathfrak{p}|$

THE ACTION OF G ON THE RIGHT COSETS OF H IN G

H has n right cosets in G of the form Hs_i ($1 \leq i \leq n$)

By its action on these cosets, G is isomorphic to a subgroup of S_n

Let T be the set formed by the elements of H whose action on the cosets has no fixed point except H itself.

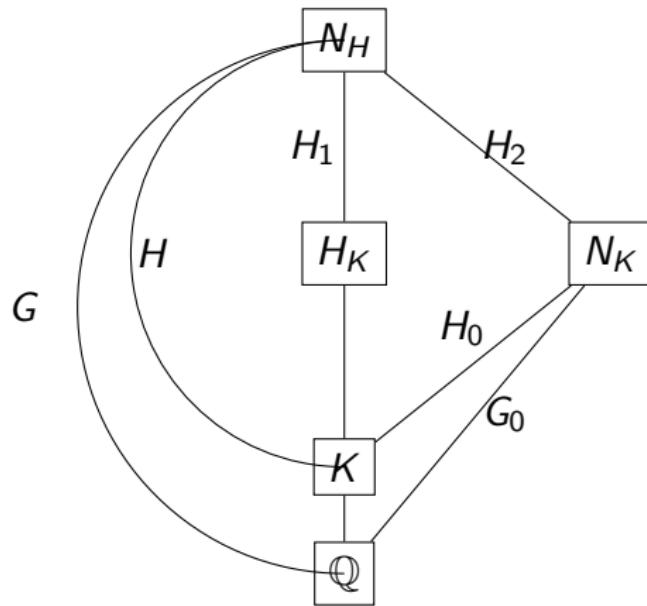
Recall that $\gamma_K : \mathcal{CI}(K) \xrightarrow{\sim} \text{Gal}(H_K/K) = H/H_1$

Thanks to $\left\{ \begin{array}{l} \text{the properties of Artin's symbols} \\ \text{the decomposition of permutations in disjoint cycles} \end{array} \right.$
one may prove that:

LEMMA (A) $(\gamma_K(\mathcal{Po}(K)_{nr}) \supseteq T \text{ mod } H_1)$

LEMMA (B) $(H = \langle T, H_1 \rangle \Rightarrow \mathcal{Po}(K)_{nr} = \mathcal{Po}(K) = \mathcal{CI}(K))$

THE NORMAL CLOSURE OF K



$$\text{Gal}(N_H/N_K) = H_2$$

$$\text{Gal}(N_K/\mathbb{Q}) = G_0 = G/H_2$$

$$\text{Gal}(N_K/K) = H_0 = H/H_2$$

$$(G, H, T) \mapsto (G_0, H_0, T_0)$$

Lemma C. $T_0 \neq \emptyset \Rightarrow T \neq \emptyset \Rightarrow H_2 \subseteq \langle T \rangle$

Lemma D. $T_0 \neq \emptyset \text{ and } H_0 = \langle T_0, H'_0 \rangle \Rightarrow H = \langle T, H_1 \rangle$

Conclusion

THEOREM (LET K BE A NUMBER FIELD OF DEGREE $n \geq 3$)

Let N_K be the normal closure of K , $G_0 = \text{Gal}(N_K/\mathbb{Q})$, $H_0 = \text{Gal}(N_K/K)$, and T_0 be the set formed by the elements of H whose action on the cosets of H_0 in G_0 admits only one fixed point, namely H_0 .

If $T_0 \neq \emptyset$ and $H_0 = \langle T_0, H_0' \rangle$, then $\mathcal{P}o(K)_{nr} = \mathcal{P}o(K) = \mathcal{CI}(K)$.

COROLLARY (The unreasonable conjecture is true)

If $G = \mathcal{S}_n$ ($n \neq 4$), or $G = \mathcal{A}_n$ ($n \neq 3, 5$), or G is a Frobenius group, then

$\mathcal{P}o(K)_{nr} = \mathcal{P}o(K) = \mathcal{CI}(K)$.

(\heartsuit) For any number field K chosen at random, with probability 1

$\text{Gal}(N_K/\mathbb{Q}) \simeq \mathcal{S}_n$, and hence, $\mathcal{P}o(K) = \mathcal{CI}(K)$.

The End