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Notation:
∗ All algebras over k = k̄ .
∗ MaxS and Spec S denote the maximal and prime ideal spectra of
S , or variety and scheme with global sections S .

Motivation... In string theory (∼ 2008), models were studied
where the extra 6 dimensions of the universe happened to be
described by certain nonnoetherian rings of functions.

Physicists asked: what does this geometry look like?
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Consider

S = k[x , y ] and R = k[x , xy , xy2, . . .] = k + xS .

MaxR may be viewed as 2-dimensional affine space A2 = MaxS
with the line

Z(x) = {x = 0} ⊂ A2

identified as single closed point.
From this perspective, Z(x) is a 1-dimensional ‘smeared-out’ point
of MaxR.
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Now let S be an integral domain and f.g. k-algebra,
and R subalgebra of S . Set

US/R := {n ∈ Max S | Rn∩R = Sn} .

Proposition

Suppose US/R 6= ∅. Then

1 US/R is open in MaxS.

2 dimR = dimS.

3 MaxR and Max S are birationally equivalent.

In our example, US/R = Z(x)c .
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Definition

• R is depicted by S if

ιS/R : SpecS → SpecR, q 7→ q ∩ R,

is surjective, and

US/R = {n ∈ MaxS | Rn∩R is noetherian } 6= ∅.

• The geometric height of a point p ∈ SpecR is

ght p := min
{

ht(q) | q ∈ ι−1S/R(p), S a depiction of R
}
.

The geometric dimension of p is

gdim p := dimR − ght p.

In our example, R is depicted by S , and

ghtR(xS) = 1, whereas htS(xS) = 2.
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Theorem

Suppose R is depicted by S. Let p ∈ SpecR. Then

ght(p) ≤ htR(p),

with equality if there is q ∈ SpecS such that q ∩ R = p and

ZS(q) ∩ US/R 6= ∅.

Furthermore, TFAE:

1 R is noetherian.

2 US/R = MaxS.

3 R = S.

In particular, if R is noetherian, then its only depiction is itself.

Question

Given algebraic sets Y1, . . . ,Yn ⊂ MaxS , does ∃R ⊂ S such that
each Yi is a closed point of MaxR?
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Let X = MaxS ,
and Y1, . . . ,Yn be a collection of non-intersecting proper algebraic
sets of X .

Theorem

Let
R := ∩i (k + I (Yi )) .

Then MaxR ∼= X except that each Yi is identified as distinct
closed point. In particular,

US/R = ∩iY c
i .

Furthermore,

R is nonnoetherian ⇐⇒ ∃i s.t. dimYi ≥ 1.

R is depicted by S ⇐⇒ ∀i , dimYi ≥ 1.
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Let S = k[x , y ] and consider the three lines

Z(x) = {x = 0}, Z(x − 1) = {x = 1}, Z(x − 2) = {x = 2}.

Then the ring

R = (k+xS)∩(k+(x−1)S)∩(k+(x−2)S) = k[x ]+x(x−1)(x−2)S

is nonnoetherian and depicted by S .

Corollary

Let I be a nonzero proper non-maximal radical ideal of S.
Set R = k + I . Then TFAE:

1 dim(S/I ) ≥ 1.

2 R is nonnoetherian.

3 R is depicted by S.
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Geometric height gives a geometric picture of nonnoetherian
‘coordinate rings’ using depictions, but does it play any role
algebraically?
Yes!
...in the noncommutative resolutions of nonnoetherian singularities

Question

Let K be the function field of an algebraic variety. A subset p of
K may be an ideal in different subalgebras of K , and the height
of p depends on the choice of such subalgebra. Is the geometric
height of p independent of the choice of subalgebra for which p
is an ideal? If this is the case, then the geometric height would
be an intrinsic property of an ideal, whereas its height would
not be.
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Let (R,m) be a noetherian local ring with R/m ∼= k.
• (1950’s) Auslander, Buchsbaum, Serre:

R regular ⇐⇒ gldimR = pdR(k) = dimR = ht(m).

• (1984) Brown and Hajarnavis:
A - noncommutative noetherian ring, f.g. module over its center R.
A is homologically homogeneous (hom hom) if for each simple
A-module V ,

gldimA = pdA(V ) = dimR = ht(annR(V )).

• (2000) string theory...
A is a noncommutative resolution (NCR) if A is hom hom, and

A⊗R FracR ∼Morita FracR.

• (2001) Van den Bergh:
A is a noncommutative crepant resolution (NCCR) if R is a normal
Gorenstein domain, A is hom hom, and

A ∼= EndR(M),

with M a f.g. reflexive R-module.
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Let B be an integral domain and k-algebra, and let

A =
[
Aij
]
⊂ Md(B)

be a tiled matrix ring, i.e., each Ai := Aii ⊂ B is unital.

Definition

Set
R := k

[
∩di=1A

i
]

and S := k
[
∪di=1A

i
]
.

The cyclic localization of A at q ∈ SpecS is

Aq :=

〈
A1
q∩A1 A12 · · · A1d

A21 A2
q∩A2

...
. . .

...
Ad1 · · · Ad

q∩Ad


〉
⊂ Md(FracB).

∗ In cases of interest, Z := Z (A) ∼= R and R is depicted by S .
∗ If R = S , then Aq

∼= A⊗R Rq.
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Suppose B is f.g. over k and k is uncountable. Further suppose

for generic b ∈ MaxB, the composition

A ↪→ Md(B)
1−→ Md (B/b)

is surjective;

the morphism

MaxB → MaxZ , b 7→ b1d ∩ Z ,

is surjective; and

for each n ∈ MaxS , Rn∩R = Sn iff Rn∩R is noetherian.

Then Z = R1d , and R is depicted by S .
Furthermore,

R = S ⇔ A is a finitely generated R-module

⇔ R is noetherian

⇒ A is noetherian
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Definition

A is cycle regular if ∀q ∈ SpecS minimal over m, and ∀
simple Aq-module V ,

gldimAq = pdAq
(V ) = dimSq = ght

(
annZ(Aq) V

)
.

A is a nonnoetherian NCR if A is cycle regular, and

A⊗R FracR ∼Morita FracR.

A is a nonnoetherian NCCR if S is a normal Gorenstein
domain, A is cycle regular, and ∀q ∈ SpecS minimal over
m,

Aq
∼= EndZ(Aq)(M),

where M is a reflexive Z (Aq)-module.
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Again consider Y1, . . . ,Yn ⊂ MaxS non-intersecting algebraic sets.
Set

Ii := I (Yi ), R := ∩ni=1 (k + Ii ) , mi := Ii ∩ R,

and consider the ‘noncommutative blowup’ of A,

A := EndR(RR ⊕
n⊕

i=1

mi ).

Theorem

A is a nonnoetherian NCR.

If each Ii is a principal prime ideal of S, then A is
nonnoetherian NCCR.
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Again consider

S = k[x , y ] and R = k + xS .

Then

A = EndR(R ⊕ xS) ∼=
[
R S
xS S

]
is a nonnoetherian NCCR of R.

Thank you!

Charlie Beil Nonnoetherian coordinate rings and their nc resolutions


