

Nonnoetherian coordinate rings and their noncommutative resolutions

Charlie Beil

University of Graz

Conference on Rings and Factorizations,
University of Graz, February 2018

Notation:

- * All algebras over $k = \bar{k}$.
- * $\text{Max } S$ and $\text{Spec } S$ denote the maximal and prime ideal spectra of S , or variety and scheme with global sections S .

Motivation... In string theory (~ 2008), models were studied where the extra 6 dimensions of the universe happened to be described by certain nonnoetherian rings of functions.

Physicists asked: what does this geometry look like?

Consider

$$S = k[x, y] \quad \text{and} \quad R = k[x, xy, xy^2, \dots] = k + xS.$$

$\text{Max } R$ may be viewed as 2-dimensional affine space $\mathbb{A}^2 = \text{Max } S$ with the line

$$\mathcal{Z}(x) = \{x = 0\} \subset \mathbb{A}^2$$

identified as single closed point.

From this perspective, $\mathcal{Z}(x)$ is a 1-dimensional 'smeared-out' point of $\text{Max } R$.

Now let S be an integral domain and f.g. k -algebra, and R subalgebra of S . Set

$$U_{S/R} := \{ \mathfrak{n} \in \text{Max } S \mid R_{\mathfrak{n} \cap R} = S_{\mathfrak{n}} \}.$$

Proposition

Suppose $U_{S/R} \neq \emptyset$. Then

- ① $U_{S/R}$ is open in $\text{Max } S$.
- ② $\dim R = \dim S$.
- ③ $\text{Max } R$ and $\text{Max } S$ are birationally equivalent.

In our example, $U_{S/R} = \mathcal{Z}(x)^c$.

Definition

- R is *depicted* by S if

$$\iota_{S/R} : \operatorname{Spec} S \rightarrow \operatorname{Spec} R, \quad \mathfrak{q} \mapsto \mathfrak{q} \cap R,$$

is surjective, and

$$U_{S/R} = \{ \mathfrak{n} \in \operatorname{Max} S \mid R_{\mathfrak{n} \cap R} \text{ is noetherian} \} \neq \emptyset.$$

- The *geometric height* of a point $\mathfrak{p} \in \operatorname{Spec} R$ is

$$\operatorname{ght} \mathfrak{p} := \min \left\{ \operatorname{ht}(\mathfrak{q}) \mid \mathfrak{q} \in \iota_{S/R}^{-1}(\mathfrak{p}), \ S \text{ a depiction of } R \right\}.$$

The *geometric dimension* of \mathfrak{p} is

$$\operatorname{gdim} \mathfrak{p} := \dim R - \operatorname{ght} \mathfrak{p}.$$

In our example, R is depicted by S , and

$$\operatorname{ght}_R(xS) = 1, \quad \text{whereas} \quad \operatorname{ht}_S(xS) = 2.$$

Theorem

Suppose R is depicted by S . Let $\mathfrak{p} \in \text{Spec } R$. Then

$$\text{ght}(\mathfrak{p}) \leq \text{ht}_R(\mathfrak{p}),$$

with equality if there is $\mathfrak{q} \in \text{Spec } S$ such that $\mathfrak{q} \cap R = \mathfrak{p}$ and

$$\mathcal{Z}_S(\mathfrak{q}) \cap U_{S/R} \neq \emptyset.$$

Furthermore, TFAE:

- ① R is noetherian.
- ② $U_{S/R} = \text{Max } S$.
- ③ $R = S$.

In particular, if R is noetherian, then its only depiction is itself.

Question

Given algebraic sets $Y_1, \dots, Y_n \subset \text{Max } S$, does $\exists R \subset S$ such that each Y_i is a closed point of $\text{Max } R$?

Let $X = \text{Max } S$,

and Y_1, \dots, Y_n be a collection of non-intersecting proper algebraic sets of X .

Theorem

Let

$$R := \cap_i (k + I(Y_i)).$$

Then $\text{Max } R \cong X$ except that each Y_i is identified as distinct closed point. In particular,

$$U_{S/R} = \cap_i Y_i^c.$$

Furthermore,

- R is nonnoetherian $\iff \exists i \text{ s.t. } \dim Y_i \geq 1$.
- R is depicted by S $\iff \forall i, \dim Y_i \geq 1$.

Let $S = k[x, y]$ and consider the three lines

$$\mathcal{Z}(x) = \{x = 0\}, \quad \mathcal{Z}(x - 1) = \{x = 1\}, \quad \mathcal{Z}(x - 2) = \{x = 2\}.$$

Then the ring

$$R = (k + xS) \cap (k + (x - 1)S) \cap (k + (x - 2)S) = k[x] + x(x - 1)(x - 2)S$$

is nonnoetherian and depicted by S .

Corollary

Let I be a nonzero proper non-maximal radical ideal of S .

Set $R = k + I$. Then TFAE:

- ① $\dim(S/I) \geq 1$.
- ② R is nonnoetherian.
- ③ R is depicted by S .

Geometric height gives a geometric picture of nonnoetherian 'coordinate rings' using depictions, but does it play any role algebraically?

Yes!

...in the noncommutative resolutions of nonnoetherian singularities

Question

Let K be the function field of an algebraic variety. A subset \mathfrak{p} of K may be an ideal in different subalgebras of K , and the height of \mathfrak{p} depends on the choice of such subalgebra. Is the geometric height of \mathfrak{p} independent of the choice of subalgebra for which \mathfrak{p} is an ideal? If this is the case, then the geometric height would be an intrinsic property of an ideal, whereas its height would not be.

Let (R, \mathfrak{m}) be a noetherian local ring with $R/\mathfrak{m} \cong k$.

- (1950's) Auslander, Buchsbaum, Serre:

$$R \text{ regular} \iff \operatorname{gldim} R = \operatorname{pd}_R(k) = \dim R = \operatorname{ht}(\mathfrak{m}).$$

- (1984) Brown and Hajarnavis:

A - noncommutative noetherian ring, f.g. module over its center R .

A is *homologically homogeneous* (hom hom) if for each simple A -module V ,

$$\operatorname{gldim} A = \operatorname{pd}_A(V) = \dim R = \operatorname{ht}(\operatorname{ann}_R(V)).$$

- (2000) string theory...

A is a *noncommutative resolution* (NCR) if A is hom hom, and

$$A \otimes_R \operatorname{Frac} R \sim_{\text{Morita}} \operatorname{Frac} R.$$

- (2001) Van den Bergh:

A is a *noncommutative crepant resolution* (NCCR) if R is a normal Gorenstein domain, A is hom hom, and

$$A \cong \operatorname{End}_R(M),$$

with M a f.g. reflexive R -module.

Let B be an integral domain and k -algebra, and let

$$A = [A^{ij}] \subset M_d(B)$$

be a tiled matrix ring, i.e., each $A^i := A^{ii} \subset B$ is unital.

Definition

Set

$$R := k \left[\cap_{i=1}^d A^i \right] \quad \text{and} \quad S := k \left[\cup_{i=1}^d A^i \right].$$

The *cyclic localization* of A at $\mathfrak{q} \in \text{Spec } S$ is

$$A_{\mathfrak{q}} := \left\langle \begin{bmatrix} A_{\mathfrak{q} \cap A^1}^1 & A_{\mathfrak{q} \cap A^2}^{12} & \cdots & A_{\mathfrak{q} \cap A^d}^{1d} \\ A_{\mathfrak{q} \cap A^2}^{21} & A_{\mathfrak{q} \cap A^3}^2 & & \\ \vdots & \ddots & \vdots & \\ A_{\mathfrak{q} \cap A^d}^{d1} & \cdots & A_{\mathfrak{q} \cap A^d}^d \end{bmatrix} \right\rangle \subset M_d(\text{Frac } B).$$

- * In cases of interest, $Z := Z(A) \cong R$ and R is depicted by S .
- * If $R = S$, then $A_{\mathfrak{q}} \cong A \otimes_R R_{\mathfrak{q}}$.

Suppose B is f.g. over k and k is uncountable. Further suppose

- for generic $\mathfrak{b} \in \text{Max } B$, the composition

$$A \hookrightarrow M_d(B) \xrightarrow{1} M_d(B/\mathfrak{b})$$

is surjective;

- the morphism

$$\text{Max } B \rightarrow \text{Max } Z, \quad \mathfrak{b} \mapsto \mathfrak{b}\mathbf{1}_d \cap Z,$$

is surjective; and

- for each $\mathfrak{n} \in \text{Max } S$, $R_{\mathfrak{n} \cap R} = S_{\mathfrak{n}}$ iff $R_{\mathfrak{n} \cap R}$ is noetherian.

Then $Z = R\mathbf{1}_d$, and R is depicted by S .

Furthermore,

$$\begin{aligned} R = S &\Leftrightarrow A \text{ is a finitely generated } R\text{-module} \\ &\Leftrightarrow R \text{ is noetherian} \\ &\Rightarrow A \text{ is noetherian} \end{aligned}$$

Definition

- A is *cycle regular* if $\forall \mathfrak{q} \in \text{Spec } S$ minimal over \mathfrak{m} , and \forall simple $A_{\mathfrak{q}}$ -module V ,

$$\text{gldim } A_{\mathfrak{q}} = \text{pd}_{A_{\mathfrak{q}}}(V) = \dim S_{\mathfrak{q}} = \text{ght}(\text{ann}_{Z(A_{\mathfrak{q}})} V).$$

- A is a *nonnoetherian NCR* if A is cycle regular, and

$$A \otimes_R \text{Frac } R \sim_{\text{Morita}} \text{Frac } R.$$

- A is a *nonnoetherian NCCR* if S is a normal Gorenstein domain, A is cycle regular, and $\forall \mathfrak{q} \in \text{Spec } S$ minimal over \mathfrak{m} ,

$$A_{\mathfrak{q}} \cong \text{End}_{Z(A_{\mathfrak{q}})}(M),$$

where M is a reflexive $Z(A_{\mathfrak{q}})$ -module.

Again consider $Y_1, \dots, Y_n \subset \text{Max } S$ non-intersecting algebraic sets.
Set

$$I_i := I(Y_i), \quad R := \cap_{i=1}^n (k + I_i), \quad \mathfrak{m}_i := I_i \cap R,$$

and consider the 'noncommutative blowup' of A ,

$$A := \text{End}_R({}_R R \oplus \bigoplus_{i=1}^n \mathfrak{m}_i).$$

Theorem

- A is a nonnoetherian NCR.
- If each I_i is a principal prime ideal of S , then A is nonnoetherian NCCR.

Again consider

$$S = k[x, y] \quad \text{and} \quad R = k + xS.$$

Then

$$A = \text{End}_R(R \oplus xS) \cong \begin{bmatrix} R & S \\ xS & S \end{bmatrix}$$

is a nonnoetherian NCCR of R .

Thank you!