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Notation:

x All algebras over k = k.

* Max S and Spec S denote the maximal and prime ideal spectra of
S, or variety and scheme with global sections S.

Motivation... In string theory (~ 2008), models were studied
where the extra 6 dimensions of the universe happened to be
described by certain nonnoetherian rings of functions.

Physicists asked: what does this geometry look like?
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Consider
S=klx,y] and R =k[x,xy,xy? ..]=k+xS.

Max R may be viewed as 2-dimensional affine space A2 = Max S
with the line
Z(x) = {x =0} C A?

identified as single closed point.
From this perspective, Z(x) is a 1-dimensional ‘smeared-out’ point
of Max R.
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Now let S be an integral domain and f.g. k-algebra,
and R subalgebra of S. Set

Us/r == {n € Max$§ | Rynr = Su}-

Proposition

Suppose Us/r # ). Then
@ Us/r is open in Max S.
Q@ dmR=dmS.
© Max R and Max S are birationally equivalent.

In our example, Us/r = Z(x)°.
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Definition
e R is depicted by S if

ts/r :SpecS — SpecR, g~ qNR,
is surjective, and
Us/r = {n € Max S | Rynr is noetherian } # 0.
e The geometric height of a point p € Spec R is
ghtp := min {ht(q) | g€ LE}R(p), S a depiction of R} .
The geometric dimension of p is

gdimp :=dim R — ghtp.
In our example, R is depicted by S, and
ghtgr(xS) =1, whereas htg(xS) = 2.



Suppose R is depicted by S. Let p € Spec R. Then
ght(p) < htr(p),

with equality if there is q € Spec S such that qN R = p and

Zs(q) N Us)r # 0.

Furthermore, TFAE:
@ R is noetherian.
Q@ Us/r = MaxS$.
Q@ R=S.

In particular, if R is noetherian, then its only depiction is itself.

Question
Given algebraic sets Yi,..., Y, C Max§, does 3R C S such that
each Y; is a closed point of Max R?
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Let X = Max S,

and Y1,...,Y, be a collection of non-intersecting proper algebraic
sets of X.

Theorem

Let

R:=ni(k+1(Y).

Then Max R = X except that each Y; is identified as distinct
closed point. In particular,

US/R =n;YF.

Furthermore,
@ R is nonnoetherian <— di s.t. dimY; > 1.
@ R is depicted by S <— Vi, dimY; > 1.
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Let S = k[x, y] and consider the three lines

Z(x)={x=0}, Z(x—-1)={x=1}, Z(x—-2)={x=2}.
Then the ring

R = (k+xS)N(k+(x—1)S)N(k+(x—2)S) = k[x]+x(x—1)(x—2)S
is nonnoetherian and depicted by S.

Corollary

Let | be a nonzero proper non-maximal radical ideal of S.
Set R=k+ 1. Then TFAE:

Q dim(S/I) > 1.
@ R is nonnoetherian.
© R is depicted by S.
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Geometric height gives a geometric picture of nonnoetherian
‘coordinate rings' using depictions, but does it play any role
algebraically?

Yes!

...in the noncommutative resolutions of nonnoetherian singularities

Question

Let K be the function field of an algebraic variety. A subset p of
K may be an ideal in different subalgebras of K, and the height
of p depends on the choice of such subalgebra. Is the geometric
height of p independent of the choice of subalgebra for which p
is an ideal? If this is the case, then the geometric height would
be an intrinsic property of an ideal, whereas its height would
not be.
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Let (R, m) be a noetherian local ring with R/m 2 k.
e (1950's) Auslander, Buchsbaum, Serre:

R regular <= gldim R = pdg(k) = dim R = ht(m).
e (1984) Brown and Hajarnavis:
A - noncommutative noetherian ring, f.g. module over its center R.

A is homologically homogeneous (hom hom) if for each simple
A-module V,

gldim A = pd4(V) = dim R = ht(anng(V)).

e (2000) string theory...
A is a noncommutative resolution (NCR) if A is hom hom, and

A®pg Frac R ~Morita Frac R.

e (2001) Van den Bergh:
Ais a noncommutative crepant resolution (NCCR) if R is a normal
Gorenstein domain, A is hom hom, and

A= Endg(M),

with M a f.g. reflexive R-module.
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Let B be an integral domain and k-algebra, and let
A= [AT] c My(B)

be a tiled matrix ring, i.e., each Al = Al ¢ B is unital.

Definition
Set

R::k{m;’:lA’} and szzk[ufleA'}.

The cyclic localization of A at q € Spec S is

1 12 1d
G 4
A A
A = < ) ana? > C My(Frac B).
Aal .': Ad'

gnAd

* In cases of interest, Z := Z(A) = R and R is depicted by S.
xIf R=3S5, then Ay, =2 A®Rr R;.
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Suppose B is f.g. over k and k is uncountable. Further suppose

o for generic b € Max B, the composition
A< My(B) -5 My (B/b)

is surjective;

@ the morphism
MaxB — MaxZ, b blynZ,

is surjective; and
e for each n € Max S, Rynr = Sy iff Ryng is noetherian.

Then Z = R1,, and R is depicted by S.
Furthermore,

R=S <« Ais a finitely generated R-module
< R is noetherian

= A is noetherian
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e Ais cycle reqular if YVq € Spec S minimal over m, and V
simple Ag-module V/,

gldim Ag = pd, (V) =dim 5, = ght (annZ(Aq) V).
o Ais a nonnoetherian NCR if A is cycle regular, and
A ®pr Frac R ~\orita Frac R.

@ A is a nonnoetherian NCCR if S is a normal Gorenstein
domain, A is cycle regular, and Vq € Spec S minimal over
m,

Aq = Endz(Aq)(M),

where M is a reflexive Z(Ay)-module.
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Again consider Yi,..., Y, C Max$§ non-intersecting algebraic sets.
Set
l; == /(Y,), R = 07:1 (k—|—/,'), m; .= NR,

and consider the ‘noncommutative blowup’ of A,

A :=Endg(rR® @m,-).
i=1

Theorem

@ A is a nonnoetherian NCR.

e Ifeach I; is a principal prime ideal of S, then A is
nonnoetherian NCCR.
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Again consider
S=k[x,y] and R=k+xS.

Then

A = Endg(R & xS) = [R 5}

xS S
is a nonnoetherian NCCR of R.

Thank you!
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