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Background

Regular ideal

Definition

An element of a ring A that is not a zero divisor is called regular.
A regular ideal of A is one that contains a regular element.
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Background

Regular ideal

Definition
An element of a ring A that is not a zero divisor is called regular.
A regular ideal of A is one that contains a regular element.

Definition

An overring of a ring A is a ring between A and its total quotient
ring.
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Background

Regular and large quotient ring

Definition

Let A be a ring with total quotient ring K and P be a prime ideal
of A. Then

(1) Ajpj={x € K|xy € A for some y € A— P} is called the large
quotient ring.

(2) A(py=As where S = (A — P) N Reg(A) is called the regular
quotient ring.

We have A g A(p) Q A[p] Q K.
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Background

Going down

Definition

A ring extension A C B satisfies going down (GD) if whenever
P C Q are prime ideals of A and Q' € Spec B with @ NA = Q,
there exists some P’ € Spec B with P’ C Q" and PPN A = P.
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Background

Going down

Definition
We say that an overring B of A is a GD-overring if A C B
satisfies going down.
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Background

Flat overrings

In the following Proposition | recall some well-known facts about
flatness.
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Background

Flat overrings

In the following Proposition | recall some well-known facts about
flatness.

Proposition

Let A be a ring and B C C overrings of A. (a) The extension

A C B is flat if and only if Apmna) = Bywmy for all maximal ideals M
of B.

(b) If AC B and B C C are flat, then A C B is flat.

(c) If AC C is flat, then B C C is flat.

(d) If AC B is flat and integral, then A = B.
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Background

Valuation ring

Definition

A (Manis) valuation on a ring A is a surjective map
v:A— GU{oo} where (G;+) is a totally ordered abelian group,
such that;

Q v(xy) = v(x)+ v(y), for all x and y in A.
Q v(x+y) > min{v(x),v(y)}, for all x and y in A.
@ v(1) =0 and v(0) = oc.
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Background

Valuation ring

Theorem (Manis 1969)

Let A be a ring with total quotient ring K and let M be a prime
ideal of A. Then the following conditions are equivalent.

(a) If B is an overring of A having a prime ideal N such that
NNA=M, then A= B.

(b) If x € K — A, there exists y € M such that xy € A— M.

(c) There exists a valuation v on K such that

A={xe K|v(x)>(0)} and M ={x € K | v(x) > 0}.
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Background

Valuation ring

Theorem (Manis 1969)

Let A be a ring with total quotient ring K and let M be a prime
ideal of A. Then the following conditions are equivalent.

(a) If B is an overring of A having a prime ideal N such that
NNA=M, then A= B.

(b) If x € K — A, there exists y € M such that xy € A— M.

(c) There exists a valuation v on K such that

A={xe K|v(x)>(0)} and M ={x € K | v(x) > 0}.

A pair (A, M) satisfying the equivalent conditions of above
theorem is called a valuation pair and A is called a valuation
ring (on K). If G is the group of integers, then A is called a
discrete valuation ring (DVR).
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Background

Prifer rings

Definition
A ring A is a Priifer ring if its finitely generated regular ideals are
invertible.
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Background

Prifer rings

A ring A is a Priifer ring if its finitely generated regular ideals are
invertible.

Theorem (Griffin 1970)

Let A be a ring with total quotient ring K. Then the following
assertions are equivalent:

© A is a Priifer ring;
Q@ For each M € Max(A), (Apm, [IM]A[m)) is a valuation pair;
© Each overring of A is A-flat.
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Background

Prifer rings

A ring A is a Priifer ring if its finitely generated regular ideals are
invertible.

Theorem (Griffin 1970)

Let A be a ring with total quotient ring K. Then the following
assertions are equivalent:

© A is a Priifer ring;
Q@ For each M € Max(A), (Apm, [IM]A[m)) is a valuation pair;
© Each overring of A is A-flat.

There exists valuation rings that are not Priifer.
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Background

Marot rings

Definition
A ring A is a Marot if each regular ideal of A is generated by its
set of regular elements.
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Background

Marot rings

Definition
A ring A is a Marot if each regular ideal of A is generated by its
set of regular elements.

Remark

@ Each overring of a Marot ring is Marot ring.
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Background

Marot rings

Definition

A ring A is a Marot if each regular ideal of A is generated by its
set of regular elements.

Remark

@ Each overring of a Marot ring is Marot ring.

e Ifaring A is Marot, then A satisfies the following condition:
(*) [P]A[p) contains all regular nonunits of Apy for every
regular prime ideal P.

Condition (x) was considered by Boison.

(M. Boisen, The containment property for large quotient rings, 1973.).
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Background

Krull rings

Definition
A Marot ring A is called a Krull ring if each regular ideal is
t-invertible.

If S a multiplicatively closed subset of a Krull ring A, then A(sy is
a Krull ring.
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Perinormal rings

Perinormal rings

We extend to rings with zero-divisors the concept of perinormal
domain introduced by N. Epstein and J. Shapiro. The following
definition is the key concept of my presentation.
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Perinormal rings

Perinormal rings

We extend to rings with zero-divisors the concept of perinormal
domain introduced by N. Epstein and J. Shapiro. The following
definition is the key concept of my presentation.

Definition

A ring A is called perinormal if whenever B is an overring of A
such that A C B satisfies going down, it follows that B is A-flat.
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Perinormal rings

Perinormal rings

We extend to rings with zero-divisors the concept of perinormal
domain introduced by N. Epstein and J. Shapiro. The following
definition is the key concept of my presentation.

Definition

A ring A is called perinormal if whenever B is an overring of A
such that A C B satisfies going down, it follows that B is A-flat.

Fact: Every Priifer ring is perinormal. (A. Rani and T. Dumitrescu,

Perinormal rings with zero divisors (to appear in J. Commut. Algebra).)
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Perinormal rings

Perinormal rings

Proposition

Let A be a perinormal ring and B a flat overring of A. Then B is
also perinormal.
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Perinormal rings

Perinormal rings

Proposition

Let A be a perinormal ring and B a flat overring of A. Then B is
also perinormal.

Proposition

A ring A is perinormal if and only if Ay is perinormal for each
maximal ideal M of A.
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Perinormal rings

Perinormal rings

Proposition

Let A be a perinormal ring and B a flat overring of A. Then B is
also perinormal.

Proposition

A ring A is perinormal if and only if Ay is perinormal for each
maximal ideal M of A.

Remark

Perinormality is not a local property in the classical sense, that is,
if Ay is perinormal for each maximal ideal M of a ring A, then A
is perinormal. The converse is not true.
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Perinormal rings

Perinormal rings

Proposition

Let A be a perinormal ring and B a flat overring of A. Then B is
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Perinormal rings

For example:

Example

Let (B, M) be a local one-dimenional domain which is not
integrally closed, C = B[X, Y]/X(M,X,Y) with X, Y are
indeterminates and A = Cy where N = (M, X, Y) is local with the
maximal ideal NAy. Since every non unit is a zero divisor

(M.X =0), Tot(A) = A. Hence A is perinormal.

On the other hand, if P = (M, X)A, then Ap ~ B(Y) is a
one-dimenional domain which is not integrally closed, hence Ap is
not perinormal.
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Perinormal rings

Perinormal rings

Proposition

Let A and B be rings. Then A x B is perinormal if and only A and
B are perinormal.
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Perinormal rings

Perinormal rings

Let A and B be rings. Then A x B is perinormal if and only A and
B are perinormal.

Corollary

The integral closure A’ of a reduced Noetherian ring A is
perinormal.

A\
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Perinormal rings
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Perinormal rings

Perinormal rings

For the rest of my presentation, | assume that all rings are Marot
rings.
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Perinormal rings

Perinormal rings

For the rest of my presentation, | assume that all rings are Marot
rings.

The concept of P-domain was introduced in

[Mott and Zafrullah 1981].
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Perinormal rings

Perinormal rings

For the rest of my presentation, | assume that all rings are Marot
rings.

The concept of P-domain was introduced in

[Mott and Zafrullah 1981].

Definition

A ring A'is called a P-ring if (Ajq), [Q]A[q)) is 2 Manis valuation
pair for every Q € Assa(K/A).
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Perinormal rings

Perinormal rings

For the rest of my presentation, | assume that all rings are Marot
rings.

The concept of P-domain was introduced in

[Mott and Zafrullah 1981].

Definition

A ring A'is called a P-ring if (Ajq), [Q]A[q)) is 2 Manis valuation
pair for every Q € Assa(K/A).

Theorem

| \

If A is a P-ring satisfying condition (x), then A is perinormal.

(A. Rani and T. Dumitrescu, Perinormal rings with zero divisors (to appear in J.

Commut. Algebra).)
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Perinormal rings

Perinormal rings

Corollary

Let A be a Marot ring. In the following list, every assertion implies
the next one.

(a) A is Noetherian and integrally closed.

(b) A is a Krull ring.

(c) Aisa PvMR.

(d) A is a P-ring.

(e) A is perinormal.
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Perinormal rings

Noetherian perinormal rings

Definition

If AC B is a ring extension. We say that a prime ideal P of A is
called unibranched in B if there exists a unique prime ideal of B
lying over P.
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Perinormal rings

Noetherian perinormal rings

Definition

If AC B is a ring extension. We say that a prime ideal P of A is
called unibranched in B if there exists a unique prime ideal of B
lying over P.

The following theorem extends a result due to McAdam for rings
with zero divisors. Our proof is just an adaptation of the original
proof.
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Perinormal rings

Noetherian perinormal rings

Definition

If AC B is a ring extension. We say that a prime ideal P of A is
called unibranched in B if there exists a unique prime ideal of B
lying over P.

The following theorem extends a result due to McAdam for rings
with zero divisors. Our proof is just an adaptation of the original
proof.

Theorem (McAdam 1972)

Let A be a Noetherian ring. If B is an integral GD-overring of A,
then the non-minimal regular prime ideals of A are unibranched in
B.
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Perinormal rings

Noetherian perinormal rings

Definition
We say that an overring B of a ring A is a unibranched overring
if the extension A C B is unibranched.
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Perinormal rings

Noetherian perinormal rings

We say that an overring B of a ring A is a unibranched overring
if the extension A C B is unibranched.

Theorem (Epstein and Shapiro 2016)

Let D be a Noetherian domain with integral closure D’'. Assume
that Dpna is a DVR for every height one prime ideal P of D'. The
following are equivalent.

(a) D is perinormal.

(b) For each P € Spec(D), Dp is the only ring C between Dp and
its integral closure such that Dp C C is unibranched.

('N. Epstein and J. Shapiro, Perinormality-a generalization of Krull domains, J.

Algebra, 2016.).
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Perinormal rings

Noetherian perinormal rings

The next result extends the previous theorem for rings with zero
divisors.
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Perinormal rings

Noetherian perinormal rings

The next result extends the previous theorem for rings with zero
divisors.

Theorem

Let A be a Noetherian ring with integral closure A" and total
quotient ring K. Assume that (Apna), PA(pna)) is @ Manis
valuation pair (in K) for every minimal regular prime P of A’. The
following assertions are equivalent.

(a) A is perinormal.

(b) Whenever P is a prime ideal of A and B is an integral
unibranched overring of Apy, we have Aipy = B.

(A. Rani and T. Dumitrescu, Perinormal rings with zero divisors (to appear in J.

Commut. Algebra).)
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My Questions

My Questions

© Arring A'is perinormal if and only if Ajpy is perinormal for all
M in Max(A)?

@ Is a non Priifer valuation ring is perinormal?
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Thank you!
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