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Background

Let R be a finite commutative ring with unity.

A function F : R −→ R is said to be a polynomial function
over R if there exists a polynomial f (x) ∈ R[x ] such that
f (a) = F (a) for every a ∈ R. In this case we say that F is the
induced function of f (x) over R and f (x) represents (induces)
F .

If F is a bijection then F is called a permutation polynomial.

Let f (x) ∈ R[x ] such that f (a) = 0 for every a ∈ R. f (x) is
called null polynomial over R. In particular if R = Zm, f (x)
called null polynomial (mod m).
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Background

Throughout:

F(R) denote the set of polynomial functions over R.

P(R) denote the set of permutation polynomials over R.

µ(m) denote the Kempner’s function, the smallest positive
integer such that m divides µ(m)!.

f ′(x) denote the formal derivative of f (x).
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Dual Numbers

When R is a commutative ring, then R[α] designates the result of

adjoint α to R with α2 = 0; that is, R[α] is R[x ]/
(x2), where α

denote x + (x2).

Simply R[α] = {a + bα : a, b ∈ R}
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Fact

Let R be a commutative ring, then
1 For a, a′, b, b′ ∈ R. We have

(a + bα)(a′ + b′α) = aa′ + (ab′ + a′b)α
(a + bα) is a unit in R[α] iff a is a unit in R.
f (a + bα) = f (a) + bf ′(a)α for every f (x) ∈ R[x ]

2 R[α] is a local ring iff R is a local ring.

3 If R is a local ring with a maximal ideal m has nilpotency n.
then R[α] is a local ring whose maximal ideal m + αR has
nilpotency n + 1
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Dual Numbers

Definition (Frisch (1999))

Let R be a finite commutative local ring with a maximal ideal m
whose nilpotency K ∈ N. We call R suitable, if for all a, b ∈ R and
all l ∈ N, ab ∈ ml ⇒ a ∈ mi and b ∈ mj with i + j ≥ min(K , l).

Proposition

Let R be a finite commutative local ring. Then R[α] is suitable iff
R is a field. In particular Zpn [α] is suitable iff n = 1.
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Null polynomials over Zm[α]

Proposition

Suppose that f (x) = f1(x) + f2(x)α, where f1(x), f2(x) ∈ Z[x ].
Then f (x) is a null polynomial over Zm[α] iff f1(x), f ′1(x) and
f2(x) are null polynomials modulo m.

Corollary

f (x) = (x)2µ(m) =
∏2µ(m)−1

j=0 (x − j) is a null polynomials over
Zm[α].
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Null polynomials over Zm[α]

Theorem

Let n ≤ p. For f (x) =
∑m

k=0(fk(x)(xp − x)k) ∈ Z[x ],

fk(x) =
∑p−1

j=0 ajkx
j . Then f (x), f ′(x) are null polynomials modulo

pn iff

aj0 ≡ 0 (mod pn),

ajk ≡ 0 (mod pn−k+1) if 1 ≤ k < n,

ajn ≡

{
0 (mod p) if n < p,

0 (mod p0) if n = p,

ajk ≡ 0 (mod p0) if k > n. For 0 ≤ j ≤ p − 1.
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Null polynomials over Zm[α]

Corollary

Let n ≤ p and f (x) ∈ Z[x ] such that f (x), f ′(x) are null
polynomials (mod pn) with deg f ≤ (n + 1)p − 1 with coefficient
reduced (mod pn). Let N denote the number of all polynomials
f (x).

Then N =

p
n(n−1)p

2 if n < p,

p
(p2−p+2)p

2 if n = p.
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Polynomial Functions over Zm[α]

Theorem

Let F : Zm[α] −→ Zm[α] defined by F (i + jα) = ci + d(i ,j)α,
where ci , d(i ,j) ∈ Zm for i , j = 0, 1, ...,m − 1. T F A E:

F is a polynomial function over Zm[α].

F induced by f (x) =
∑2µ−1

k=0 akx
k +

∑µ−1
l=0 blx

lα.

The system of linear congruences,{∑2µ−1
k=0 ikxk ≡ ci∑2µ−1
k=0 kik−1jxk +

∑µ−1
l=0 i lyl ≡ d(i ,j) (mod m)

i , j = 0, 1, ...,m − 1, has a solution xk = ak , yl = bl for
k = 0, 1, ..., 2µ− 1, l = 0, 1, ..., µ− 1.
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Polynomial Functions over Zm[α]

Theorem

Let f (x) = f1(x) + f2(x)α, where f1(x), f2(x) ∈ Z[x ]. Then f (x) is
a permutation polynomial over Zpn [α] iff f1(x) is a permutation
polynomial (mod p) and f ′1(a) 6≡ 0 for every a ∈ Zp.
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Polynomial Functions over Zm[α]

Let Stabα(Zm) = {F ∈ P(Zm[α]) : F (a) = a for every a ∈ Zm}.

Proposition

Let m = pn11 ...p
nk
k where p1, .., pk are distinct primes and suppose

that nj > 1 for j = 1, .., k. Then Stabα(Zm) = {F ∈ P(Zm[α]) :
F is represented by x + h(x), h(x) ∈ Z[x ] where h(x) is a null
polynomial modulo m}.
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Counting Formulas

Theorem

Let n > 1. The number of polynomial functions over Zpn [α] is
given by |F(Zpn [α])| = |F(Zpn)|2 × |Stabα(Zpn)|.

Theorem

Let n > 1. The number of permutation polynomials over Zpn [α] is
given by |P(Zpn [α])| = |F(Zpn)| × |P(Zpn)| × |Stabα(Zpn)|.
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Counting Formulas

Proposition

Let 1 < n ≤ p

|Stabα(Zpn)| =

{
pnp if n < p,

p(p−1)p if n = p.
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Counting Formulas

Theorem

For n ≤ p the number of polynomial functions over Zpn [α] is given
by

|F(Zpn [α])| =

{
p(n

2+2n)p if n < p,

p(p
2+2p−1)p if n = p.

Corollary

For n ≤ p the number of permutation polynomials over Zpn [α] is

given by |P(Zpn [α])| =

{
p!(p − 1)pp(n

2+2n−2)p if n < p,

p!(p − 1)pp(p
2+2p−3)p if n = p.

.
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Some Generalizations

Theorem

Let Zpn [α1, ..., αk ] = {a + b1α1 + ...+ bkαk : αiαj = 0, a, bi ∈
Zpn for i , j = 1, .., k}.

Then:

1 For n > 1, |F(Zpn [α1, ..., αk ])| = |F(Zpn)|k+1 × |Stabα(Zpn)|.
2 For n ≤ p,

|F(Zpn [α1, ..., αk ])| =

{
p(n

2+2n)pp
n(n+1)(k−1)p

2 if n < p,

p(p
2+2p−1)pp

n(n+1)(k−1)p
2 if n = p.

|P(Zpn [α1, ..., αk ])| ={
p!(p − 1)pp(n

2+2n−2)pp
n(n+1)(k−1)p

2 if n < p,

p!(p − 1)pp(p
2+2p−3)pp

p(p+1)(k−1)p
2 if n = p.
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