

Polynomial Functions of the Ring of Dual Numbers Modulo m

Amr Al-Maktry¹ Hasan Al-Ezeh² Sophie Frisch¹

¹TU Graz University

²Jordan University

Conference on Rings and Factorizations, 2018

Outline

- 1 Background
- 2 Dual Numbers
- 3 Null polynomials over $\mathbb{Z}_m[\alpha]$
- 4 Polynomial Functions over $\mathbb{Z}_m[\alpha]$
- 5 Counting Formulas
- 6 Some Generalizations

Background

Let R be a finite commutative ring with unity.

Background

Let R be a finite commutative ring with unity.

- A function $F : R \longrightarrow R$ is said to be a polynomial function over R if there exists a polynomial $f(x) \in R[x]$ such that $f(a) = F(a)$ for every $a \in R$. In this case we say that F is the induced function of $f(x)$ over R and $f(x)$ represents (induces) F .

Background

Let R be a finite commutative ring with unity.

- A function $F : R \longrightarrow R$ is said to be a polynomial function over R if there exists a polynomial $f(x) \in R[x]$ such that $f(a) = F(a)$ for every $a \in R$. In this case we say that F is the induced function of $f(x)$ over R and $f(x)$ represents (induces) F .
- If F is a bijection then F is called a permutation polynomial.

Background

Let R be a finite commutative ring with unity.

- A function $F : R \longrightarrow R$ is said to be a polynomial function over R if there exists a polynomial $f(x) \in R[x]$ such that $f(a) = F(a)$ for every $a \in R$. In this case we say that F is the induced function of $f(x)$ over R and $f(x)$ represents (induces) F .
- If F is a bijection then F is called a permutation polynomial.
- Let $f(x) \in R[x]$ such that $f(a) = 0$ for every $a \in R$. $f(x)$ is called null polynomial over R .

Background

Let R be a finite commutative ring with unity.

- A function $F : R \longrightarrow R$ is said to be a polynomial function over R if there exists a polynomial $f(x) \in R[x]$ such that $f(a) = F(a)$ for every $a \in R$. In this case we say that F is the induced function of $f(x)$ over R and $f(x)$ represents (induces) F .
- If F is a bijection then F is called a permutation polynomial.
- Let $f(x) \in R[x]$ such that $f(a) = 0$ for every $a \in R$. $f(x)$ is called null polynomial over R .

Background

Let R be a finite commutative ring with unity.

- A function $F : R \rightarrow R$ is said to be a polynomial function over R if there exists a polynomial $f(x) \in R[x]$ such that $f(a) = F(a)$ for every $a \in R$. In this case we say that F is the induced function of $f(x)$ over R and $f(x)$ represents (induces) F .
- If F is a bijection then F is called a permutation polynomial.
- Let $f(x) \in R[x]$ such that $f(a) = 0$ for every $a \in R$. $f(x)$ is called null polynomial over R . In particular if $R = \mathbb{Z}_m$, $f(x)$ called null polynomial (*mod* m).

Background

Throughout:

Background

Throughout:

- $\mathcal{F}(R)$ denote the set of polynomial functions over R .

Background

Throughout:

- $\mathcal{F}(R)$ denote the set of polynomial functions over R .
- $\mathcal{P}(R)$ denote the set of permutation polynomials over R .

Background

Throughout:

- $\mathcal{F}(R)$ denote the set of polynomial functions over R .
- $\mathcal{P}(R)$ denote the set of permutation polynomials over R .
- $\mu(m)$ denote the Kempner's function, the smallest positive integer such that m divides $\mu(m)!$.

Background

Throughout:

- $\mathcal{F}(R)$ denote the set of polynomial functions over R .
- $\mathcal{P}(R)$ denote the set of permutation polynomials over R .
- $\mu(m)$ denote the Kempner's function, the smallest positive integer such that m divides $\mu(m)!$.
- $f'(x)$ denote the formal derivative of $f(x)$.

Dual Numbers

When R is a commutative ring, then $R[\alpha]$ designates the result of adjoint α to R with $\alpha^2 = 0$; that is, $R[\alpha]$ is $R[x]/(x^2)$, where α denote $x + (x^2)$.

Dual Numbers

When R is a commutative ring, then $R[\alpha]$ designates the result of adjoint α to R with $\alpha^2 = 0$; that is, $R[\alpha]$ is $R[x]/(x^2)$, where α denote $x + (x^2)$. Simply $R[\alpha] = \{a + b\alpha : a, b \in R\}$

Fact

Let R be a commutative ring, then

- 1 For $a, a', b, b' \in R$. We have

Fact

Let R be a commutative ring, then

- ① For $a, a', b, b' \in R$. We have
 - $(a + b\alpha)(a' + b'\alpha) = aa' + (ab' + a'b)\alpha$

Fact

Let R be a commutative ring, then

① For $a, a', b, b' \in R$. We have

- $(a + b\alpha)(a' + b'\alpha) = aa' + (ab' + a'b)\alpha$
- $(a + b\alpha)$ is a unit in $R[\alpha]$ iff a is a unit in R .

Fact

Let R be a commutative ring, then

① For $a, a', b, b' \in R$. We have

- $(a + b\alpha)(a' + b'\alpha) = aa' + (ab' + a'b)\alpha$
- $(a + b\alpha)$ is a unit in $R[\alpha]$ iff a is a unit in R .
- $f(a + b\alpha) = f(a) + bf'(a)\alpha$ for every $f(x) \in R[x]$

Fact

Let R be a commutative ring, then

- ① For $a, a', b, b' \in R$. We have
 - $(a + b\alpha)(a' + b'\alpha) = aa' + (ab' + a'b)\alpha$
 - $(a + b\alpha)$ is a unit in $R[\alpha]$ iff a is a unit in R .
 - $f(a + b\alpha) = f(a) + bf'(a)\alpha$ for every $f(x) \in R[x]$
- ② $R[\alpha]$ is a local ring iff R is a local ring.

Fact

Let R be a commutative ring, then

- ① For $a, a', b, b' \in R$. We have
 - $(a + b\alpha)(a' + b'\alpha) = aa' + (ab' + a'b)\alpha$
 - $(a + b\alpha)$ is a unit in $R[\alpha]$ iff a is a unit in R .
 - $f(a + b\alpha) = f(a) + bf'(a)\alpha$ for every $f(x) \in R[x]$
- ② $R[\alpha]$ is a local ring iff R is a local ring.
- ③ If R is a local ring with a maximal ideal \mathfrak{m} has nilpotency n . then $R[\alpha]$ is a local ring whose maximal ideal $\mathfrak{m} + \alpha R$ has nilpotency $n + 1$

Dual Numbers

Definition (Frisch (1999))

Let R be a finite commutative local ring with a maximal ideal \mathfrak{m} whose nilpotency $K \in \mathbb{N}$. We call R *suitable*, if for all $a, b \in R$ and all $l \in \mathbb{N}$, $ab \in \mathfrak{m}^l \Rightarrow a \in \mathfrak{m}^i$ and $b \in \mathfrak{m}^j$ with $i + j \geq \min(K, l)$.

Dual Numbers

Definition (Frisch (1999))

Let R be a finite commutative local ring with a maximal ideal \mathfrak{m} whose nilpotency $K \in \mathbb{N}$. We call R *suitable*, if for all $a, b \in R$ and all $l \in \mathbb{N}$, $ab \in \mathfrak{m}^l \Rightarrow a \in \mathfrak{m}^i$ and $b \in \mathfrak{m}^j$ with $i + j \geq \min(K, l)$.

Proposition

Let R be a finite commutative local ring. Then $R[\alpha]$ is suitable iff R is a field.

Dual Numbers

Definition (Frisch (1999))

Let R be a finite commutative local ring with a maximal ideal \mathfrak{m} whose nilpotency $K \in \mathbb{N}$. We call R *suitable*, if for all $a, b \in R$ and all $l \in \mathbb{N}$, $ab \in \mathfrak{m}^l \Rightarrow a \in \mathfrak{m}^i$ and $b \in \mathfrak{m}^j$ with $i + j \geq \min(K, l)$.

Proposition

Let R be a finite commutative local ring. Then $R[\alpha]$ is suitable iff R is a field. In particular $\mathbb{Z}_{p^n}[\alpha]$ is suitable iff $n = 1$.

Null polynomials over $\mathbb{Z}_m[\alpha]$

Proposition

Suppose that $f(x) = f_1(x) + f_2(x)\alpha$, where $f_1(x), f_2(x) \in \mathbb{Z}[x]$. Then $f(x)$ is a null polynomial over $\mathbb{Z}_m[\alpha]$ iff $f_1(x)$, $f_1'(x)$ and $f_2(x)$ are null polynomials modulo m .

Null polynomials over $\mathbb{Z}_m[\alpha]$

Proposition

Suppose that $f(x) = f_1(x) + f_2(x)\alpha$, where $f_1(x), f_2(x) \in \mathbb{Z}[x]$. Then $f(x)$ is a null polynomial over $\mathbb{Z}_m[\alpha]$ iff $f_1(x)$, $f_1'(x)$ and $f_2(x)$ are null polynomials modulo m .

Corollary

$f(x) = (x)_{2\mu(m)} = \prod_{j=0}^{2\mu(m)-1} (x - j)$ is a null polynomial over $\mathbb{Z}_m[\alpha]$.

Null polynomials over $\mathbb{Z}_m[\alpha]$

Theorem

Let $n \leq p$. For $f(x) = \sum_{k=0}^m (f_k(x)(x^p - x)^k) \in \mathbb{Z}[x]$,
 $f_k(x) = \sum_{j=0}^{p-1} a_{jk} x^j$. Then $f(x), f'(x)$ are null polynomials modulo p^n iff

$$a_{j0} \equiv 0 \pmod{p^n},$$

$$a_{jk} \equiv 0 \pmod{p^{n-k+1}} \text{ if } 1 \leq k < n,$$

$$a_{jn} \equiv \begin{cases} 0 \pmod{p} & \text{if } n < p, \\ 0 \pmod{p^0} & \text{if } n = p, \end{cases}$$

$$a_{jk} \equiv 0 \pmod{p^0} \text{ if } k > n. \text{ For } 0 \leq j \leq p-1.$$

Null polynomials over $\mathbb{Z}_m[\alpha]$

Corollary

Let $n \leq p$ and $f(x) \in \mathbb{Z}[x]$ such that $f(x), f'(x)$ are null polynomials $(\bmod p^n)$ with $\deg f \leq (n+1)p - 1$ with coefficient reduced $(\bmod p^n)$. Let N denote the number of all polynomials $f(x)$.

$$\text{Then } N = \begin{cases} p^{\frac{n(n-1)p}{2}} & \text{if } n < p, \\ p^{\frac{(p^2-p+2)p}{2}} & \text{if } n = p. \end{cases}$$

Polynomial Functions over $\mathbb{Z}_m[\alpha]$

Theorem

Let $F : \mathbb{Z}_m[\alpha] \longrightarrow \mathbb{Z}_m[\alpha]$ defined by $F(i + j\alpha) = c_i + d_{(i,j)}\alpha$, where $c_i, d_{(i,j)} \in \mathbb{Z}_m$ for $i, j = 0, 1, \dots, m-1$. TFAE:

- F is a polynomial function over $\mathbb{Z}_m[\alpha]$.
- F induced by $f(x) = \sum_{k=0}^{2\mu-1} a_k x^k + \sum_{l=0}^{\mu-1} b_l x^l \alpha$.

- The system of linear congruences,

$$\left\{ \sum_{k=0}^{2\mu-1} i^k x_k \equiv c_i \right.$$

$$\left. \sum_{k=0}^{2\mu-1} k i^{k-1} j x_k + \sum_{l=0}^{\mu-1} i^l y_l \equiv d_{(i,j)} \pmod{m} \right)$$

$i, j = 0, 1, \dots, m-1$, has a solution $x_k = a_k$, $y_l = b_l$ for $k = 0, 1, \dots, 2\mu-1$, $l = 0, 1, \dots, \mu-1$.

Polynomial Functions over $\mathbb{Z}_m[\alpha]$

Theorem

Let $f(x) = f_1(x) + f_2(x)\alpha$, where $f_1(x), f_2(x) \in \mathbb{Z}[x]$. Then $f(x)$ is a permutation polynomial over $\mathbb{Z}_{p^n}[\alpha]$ iff $f_1(x)$ is a permutation polynomial (mod p) and $f_1'(a) \not\equiv 0$ for every $a \in \mathbb{Z}_p$.

Polynomial Functions over $\mathbb{Z}_m[\alpha]$

Let $Stab_\alpha(\mathbb{Z}_m) = \{F \in \mathcal{P}(\mathbb{Z}_m[\alpha]) : F(a) = a \text{ for every } a \in \mathbb{Z}_m\}$.

Polynomial Functions over $\mathbb{Z}_m[\alpha]$

Let $Stab_\alpha(\mathbb{Z}_m) = \{F \in \mathcal{P}(\mathbb{Z}_m[\alpha]) : F(a) = a \text{ for every } a \in \mathbb{Z}_m\}$.

Proposition

Let $m = p_1^{n_1} \dots p_k^{n_k}$ where p_1, \dots, p_k are distinct primes and suppose that $n_j > 1$ for $j = 1, \dots, k$. Then $Stab_\alpha(\mathbb{Z}_m) = \{F \in \mathcal{P}(\mathbb{Z}_m[\alpha]) : F \text{ is represented by } x + h(x), h(x) \in \mathbb{Z}[x] \text{ where } h(x) \text{ is a null polynomial modulo } m\}$.

Counting Formulas

Theorem

Let $n > 1$. The number of polynomial functions over $\mathbb{Z}_{p^n}[\alpha]$ is given by $|\mathcal{F}(\mathbb{Z}_{p^n}[\alpha])| = |\mathcal{F}(\mathbb{Z}_{p^n})|^2 \times |\text{Stab}_\alpha(\mathbb{Z}_{p^n})|$.

Counting Formulas

Theorem

Let $n > 1$. The number of polynomial functions over $\mathbb{Z}_{p^n}[\alpha]$ is given by $|\mathcal{F}(\mathbb{Z}_{p^n}[\alpha])| = |\mathcal{F}(\mathbb{Z}_{p^n})|^2 \times |\text{Stab}_\alpha(\mathbb{Z}_{p^n})|$.

Theorem

Let $n > 1$. The number of permutation polynomials over $\mathbb{Z}_{p^n}[\alpha]$ is given by $|\mathcal{P}(\mathbb{Z}_{p^n}[\alpha])| = |\mathcal{F}(\mathbb{Z}_{p^n})| \times |\mathcal{P}(\mathbb{Z}_{p^n})| \times |\text{Stab}_\alpha(\mathbb{Z}_{p^n})|$.

Counting Formulas

Proposition

Let $1 < n \leq p$

$$|Stab_{\alpha}(\mathbb{Z}_{p^n})| = \begin{cases} p^{np} & \text{if } n < p, \\ p^{(p-1)p} & \text{if } n = p. \end{cases}$$

Counting Formulas

Theorem

For $n \leq p$ the number of polynomial functions over $\mathbb{Z}_{p^n}[\alpha]$ is given by

$$|\mathcal{F}(\mathbb{Z}_{p^n}[\alpha])| = \begin{cases} p^{(n^2+2n)p} & \text{if } n < p, \\ p^{(p^2+2p-1)p} & \text{if } n = p. \end{cases}$$

Counting Formulas

Theorem

For $n \leq p$ the number of polynomial functions over $\mathbb{Z}_{p^n}[\alpha]$ is given by

$$|\mathcal{F}(\mathbb{Z}_{p^n}[\alpha])| = \begin{cases} p^{(n^2+2n)p} & \text{if } n < p, \\ p^{(p^2+2p-1)p} & \text{if } n = p. \end{cases}$$

Corollary

For $n \leq p$ the number of permutation polynomials over $\mathbb{Z}_{p^n}[\alpha]$ is given by $|\mathcal{P}(\mathbb{Z}_{p^n}[\alpha])| = \begin{cases} p!(p-1)^p p^{(n^2+2n-2)p} & \text{if } n < p, \\ p!(p-1)^p p^{(p^2+2p-3)p} & \text{if } n = p. \end{cases}$

Some Generalizations

Theorem

Let $\mathbb{Z}_{p^n}[\alpha_1, \dots, \alpha_k] = \{a + b_1\alpha_1 + \dots + b_k\alpha_k : \alpha_i\alpha_j = 0, a, b_i \in \mathbb{Z}_{p^n} \text{ for } i, j = 1, \dots, k\}$.

Some Generalizations

Theorem

Let $\mathbb{Z}_{p^n}[\alpha_1, \dots, \alpha_k] = \{a + b_1\alpha_1 + \dots + b_k\alpha_k : \alpha_i\alpha_j = 0, a, b_i \in \mathbb{Z}_{p^n} \text{ for } i, j = 1, \dots, k\}$. Then:

- 1 For $n > 1$, $|\mathcal{F}(\mathbb{Z}_{p^n}[\alpha_1, \dots, \alpha_k])| = |\mathcal{F}(\mathbb{Z}_{p^n})|^{k+1} \times |Stab_\alpha(\mathbb{Z}_{p^n})|$.

Some Generalizations

Theorem

Let $\mathbb{Z}_{p^n}[\alpha_1, \dots, \alpha_k] = \{a + b_1\alpha_1 + \dots + b_k\alpha_k : \alpha_i\alpha_j = 0, a, b_i \in \mathbb{Z}_{p^n} \text{ for } i, j = 1, \dots, k\}$. Then:

- ① For $n > 1$, $|\mathcal{F}(\mathbb{Z}_{p^n}[\alpha_1, \dots, \alpha_k])| = |\mathcal{F}(\mathbb{Z}_{p^n})|^{k+1} \times |Stab_\alpha(\mathbb{Z}_{p^n})|$.
- ② For $n \leq p$,

- $|\mathcal{F}(\mathbb{Z}_{p^n}[\alpha_1, \dots, \alpha_k])| = \begin{cases} p^{(n^2+2n)p} p^{\frac{n(n+1)(k-1)p}{2}} & \text{if } n < p, \\ p^{(p^2+2p-1)p} p^{\frac{n(n+1)(k-1)p}{2}} & \text{if } n = p. \end{cases}$

Some Generalizations

Theorem

Let $\mathbb{Z}_{p^n}[\alpha_1, \dots, \alpha_k] = \{a + b_1\alpha_1 + \dots + b_k\alpha_k : \alpha_i\alpha_j = 0, a, b_i \in \mathbb{Z}_{p^n} \text{ for } i, j = 1, \dots, k\}$. Then:

- ① For $n > 1$, $|\mathcal{F}(\mathbb{Z}_{p^n}[\alpha_1, \dots, \alpha_k])| = |\mathcal{F}(\mathbb{Z}_{p^n})|^{k+1} \times |Stab_\alpha(\mathbb{Z}_{p^n})|$.
- ② For $n \leq p$,

- $|\mathcal{F}(\mathbb{Z}_{p^n}[\alpha_1, \dots, \alpha_k])| = \begin{cases} p^{(n^2+2n)p} p^{\frac{n(n+1)(k-1)p}{2}} & \text{if } n < p, \\ p^{(p^2+2p-1)p} p^{\frac{n(n+1)(k-1)p}{2}} & \text{if } n = p. \end{cases}$
- $|\mathcal{P}(\mathbb{Z}_{p^n}[\alpha_1, \dots, \alpha_k])| = \begin{cases} p!(p-1)^p p^{(n^2+2n-2)p} p^{\frac{n(n+1)(k-1)p}{2}} & \text{if } n < p, \\ p!(p-1)^p p^{(p^2+2p-3)p} p^{\frac{p(p+1)(k-1)p}{2}} & \text{if } n = p. \end{cases}$

References

Chen, Z. (1995). On polynomial functions from Z_n to Z_m . *Discrete Math.*, 137(1-3):137–145.

Frisch, S. (1999). Polynomial functions on finite commutative rings. In *Advances in commutative ring theory (Fez, 1997)*, volume 205 of *Lecture Notes in Pure and Appl. Math.*, pages 323–336. Dekker, New York.

Frisch, S. and Krenn, D. (2013). Sylow p -groups of polynomial permutations on the integers mod p^n . *J. Number Theory*, 133(12):4188–4199.

Kempner, A. J. (1918). Miscellanea. *Amer. Math. Monthly*, 25(5):201–210.

Kempner, A. J. (1921). Polynomials and their residue systems. *Trans. Amer. Math. Soc.*, 22(2):240–266, 267–288.