

On extremal product-one free sequences and weighted Davenport constants

Conference on Rings and Factorizations
Graz, Austria

Sávio Ribas

Instituto Federal de Minas Gerais (IFMG) - Campus Ouro Preto
Ouro Preto, Minas Gerais, Brazil

Joint work with **Fabio E. Brochero Martínez**/UFMG

February 19th-23rd, 2018

Theorem (Erdős-Ginzburg-Ziv, 1961)

Let $n \in \mathbb{N}$. Given $a_1, a_2, \dots, a_{2n-1} \in \mathbb{Z}$, there exist

$$1 \leq i_1 < i_2 < \dots < i_n \leq 2n-1$$

such that

$$a_{i_1} + a_{i_2} + \dots + a_{i_n} \equiv 0 \pmod{n}.$$

The number $2n-1$ is the best possible, since the sequence

$$\underbrace{0, 0, \dots, 0}_{n-1 \text{ times}}, \underbrace{1, 1, \dots, 1}_{n-1 \text{ times}}$$

has no subsequence of length n and sum $0 \in \mathbb{Z}_n$.

Definition (small Davenport constant)

Let G a finite group (written multiplicatively). The **small Davenport constant** of G , $d(G)$, is the smallest number such that every sequence with $d(G)$ elements in G (repetition allowed) contains some subsequence such that the product of its terms in some order is 1.

- For every finite group G , we have $d(G) \leq |G|$.
- If C_n is the cyclic group of order n then $d(C_n) = n$.

- If $G = C_{n_1} \times \cdots \times C_{n_r}$ and $n_1 | \dots | n_r$ then

$$d(G) \geq 1 + \sum_{i=1}^r (n_i - 1).$$

- Olson (1969) proved that the equality holds if each n_i is a power of a prime or if $r = 2$.
- There are groups with $r \geq 4$ such that the inequality is strict.
- P. van Emde Boas & Kruyswijk (1969) proved that if G is a finite abelian group then

$$d(G) \leq \exp(G) \left[1 + \log \left(\frac{|G|}{\exp(G)} \right) \right].$$

Inverse zero-sum problems

Let G a finite group written multiplicatively. By definition, there exist sequences $S = (x_1, x_2, \dots, x_{d(G)-1})$ of G such that

$$x_{i_1} \cdot x_{i_2} \cdots x_{i_k} \neq 1$$

for every non-empty subset $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, \dots, d(G) - 1\}$.

The **inverse zero-sum problems** study the structure of these extremal sequences which are free of product-1 subsequences with some prescribed property.

The inverse problems associated to the Davenport constant were solved for few abelian groups. For example:

Theorem (Inverse problem in C_n wrt Davenport constant [6])

Let $n \geq 3$ and S be a sequence in C_n free of product-1 subsequences. Then there exist some $g \in S$ with multiplicity

$$\geq 2|S| - n + 1.$$

In particular, $|S| = n - 1 \Rightarrow S = \underbrace{(g, \dots, g)}_{n-1 \text{ times}}$, where g generates C_n .

Metacyclic Groups

Let $q \in \mathbb{N}$, $m \geq 2$ be a divisor of $\varphi(q)$ and $s \in \mathbb{Z}_q^*$ such that $s^m \equiv 1 \pmod{q}$. Denote by $C_q \rtimes_s C_m$ the **Metacyclic Group**, i.e. the group generated by x and y with relations:

$$x^m = 1, \quad y^q = 1, \quad yx = xy^s.$$

Bass [2] showed that if q is a prime and $ord_q(s) = m$ then

$$d(C_q \rtimes_s C_m) = m + q - 1.$$

Theorem (Brochero Martínez, Ribas [3])

Let S be a sequence in the metacyclic group $C_q \rtimes_s C_m$, where q is a prime and $\text{ord}_q(s) = m$, with $|S| = m + q - 2$.

1. If $(m, q) \neq (2, 3)$ then the following statements are equivalent:

1.i S is free of product-1 subsequences;

1.ii For some $1 \leq t \leq q - 1$, $1 \leq i \leq m - 1$ with $\text{gcd}(i, m) = 1$ and $0 \leq \nu_1, \dots, \nu_{m-1} \leq q - 1$,

$$S = (\underbrace{y^t, \dots, y^t}_{q-1 \text{ times}}, x^i y^{\nu_1}, \dots, x^i y^{\nu_{m-1}}).$$

2. If $(m, q) = (2, 3)$ then S is free of product-1 subsequences if and only if $S = (y^t, y^t, xy^\nu)$ for $t \in \{2, 3\}$ and $\nu \in \{0, 1, 2\}$ or $S = (x, xy, xy^2)$.

Definition (A -weighted Davenport constant)

Let G be an abelian group and $A \subset \mathbb{Z}$. The **A -weighted Davenport constant** of G , $D_A(G)$, is the smallest positive integer such that every sequence $x_1, \dots, x_{D_A(G)}$ of G has a non-empty subsequence $(x_{j_i})_i$ such that

$$\sum_{i=1}^t \varepsilon_i x_{j_i} = 0$$

for some $\varepsilon_i \in A$.

- For every finite abelian group G , we have $D_A(G) \leq d(G)$.
- $D_A(G)$ is only known for some weight-sets A and some “small” groups G . For example:

Theorem (Adhikari, et al [1])

$$D_{\{\pm 1\}}(C_n) = \lfloor \log_2 n \rfloor + 1.$$

Dihedral Groups

Let $n \geq 3$ be an integer. Denote by $D_{2n} \simeq (C_n \rtimes_{-1} C_2)$ the **Dihedral Group**, i.e. the group generated by x and y with relations:

$$x^2 = 1, \quad y^n = 1, \quad yx = xy^{-1}.$$

Zhuang and Gao [7] showed that $d(D_{2n}) = n + 1$.

Theorem (Brochero Martínez, Ribas [4])

Let S be a sequence in the dihedral group D_{2n} with n elements.

1. If $n \geq 4$ then S is free of product-1 subsequences if and only if

$$S = (\underbrace{y^t, \dots, y^t}_{n-1 \text{ times}}, xy^s),$$

for some $1 \leq t \leq n - 1$ with $\gcd(t, n) = 1$ and $0 \leq s \leq n - 1$.

2. Case $n = 3$ is the same than case $(m, q) = (2, 3)$ of metacyclic groups.

Sketch of the proof

Let H be the normal cyclic subgroup of order n generated by y and let

$$N = D_{2n} \setminus H = x \cdot H.$$

Define $k \in \mathbb{N}$ by the equation

$$|S \cap H| = n - k.$$

The case $k = 0$ implies we have n elements in H , therefore there exist a product-1 subsequence.

The case $k = 1$ gives us the desired sequences.

Suppose $S \cap N = (xy^{\alpha_1}, \dots, xy^{\alpha_k})$. We have

$$xy^{\alpha_i} \cdot xy^{\alpha_j} = y^{\alpha_j - \alpha_i}.$$

If $k \geq 2$ is “small” then almost every elements from $S \cap H$ are equal, and it is easy to exhibit a product-1 subsequence which involves pairs of elements from $S \cap N$.

If $k \geq 2$ is “large” then there exist a combination of a suitable subset of

$$\{\pm(\alpha_1 - \alpha_2), \pm(\alpha_3 - \alpha_4), \dots, \pm(\alpha_{2\lfloor k/2 \rfloor - 1} - \alpha_{2\lfloor k/2 \rfloor})\}$$

summing 0 (by inverse Davenport constant of C_n), so we are done.

□

Dicyclic Groups

Let $n \geq 2$ be an integer. Denote by Q_{4n} the **Dicyclic Group**, i.e. the group generated by x and y with relations:

$$x^2 = y^n, \quad y^{2n} = 1, \quad yx = xy^{-1}.$$

Bass [2] showed that $d(Q_{4n}) = 2n + 1$.

If $n = 2$ then Q_8 is isomorphic to the well-known **Quaternion Group**:

$$\langle e, i, j, k | i^2 = j^2 = k^2 = ijk = e, e^2 = 1 \rangle.$$

The sequences with 4 elements in the quaternion group which are free of product-1 subsequences are $\pm(i, i, i, \pm j)$ and their respective symmetrics.

Theorem (Brochero Martínez, Ribas [4])

Let S be a sequence in the dicyclic group Q_{4n} with $2n$ elements.

1. If $n \geq 3$ then the following statements are equivalent:
 - 1.i S is free of product-1 subsequences;
 - 1.ii For some $1 \leq t \leq n-1$ with $\gcd(t, 2n) = 1$ and $0 \leq s \leq 2n-1$,

$$S = (\underbrace{y^t, \dots, y^t}_{2n-1 \text{ times}}, xy^s).$$

2. If $n = 2$ then S is free of product-1 subsequences if and only if, for some $r \in \mathbb{Z}_4^*$ and $s \in \mathbb{Z}_4$, S has one the following forms: (y^r, y^r, y^r, xy^s) , (y^r, xy^s, xy^s, xy^s) or $(xy^s, xy^s, xy^s, xy^{r+s})$.

This theorem is a corollary of the theorem for dihedral groups. The idea to prove it is using the equation $Q_{4n}/\{1, y^n\} \simeq D_{2n}$.

The group $C_n \rtimes_s C_2$ with $s \not\equiv \pm 1 \pmod{n}$

Theorem (Brochero Martínez, Ribas [5])

Let $n \in \mathbb{N}$ such that there exist $s \in \mathbb{Z}_n^*$ satisfying $s^2 \equiv 1 \pmod{n}$ but $s \not\equiv \pm 1 \pmod{n}$. Also, let $n_1 = \gcd(s+1, n)$, $n_2 = n/n_1$ and assume that $\gcd(n_1, n_2) = 1$. Then

$$D_{\{1,s\}}(C_n) \leq \min\{n_2(\lfloor \log_2 n \rfloor + 1), 2n_2 + \lfloor n_1/2 \rfloor\}.$$

Theorem (Brochero Martínez, Ribas [5])

Let n , s , n_1 and n_2 as above. Suppose that S is a sequence with n elements in the group $G = C_n \rtimes_s C_2$ and assume $\min\{n_1, n_2\} \geq 20$. Then S is free of product-1 subsequences if and only if

$$S = (\underbrace{y^t, \dots, y^t}_{n-1 \text{ times}}, xy^r), \text{ for some } t \in \mathbb{Z}_n^* \text{ and } r \in \mathbb{Z}_n.$$

References

- [1] Adhikari, S.D., et al; **Contributions to zero-sum problems**. Discrete Math. 306 (2006), 1-10.
- [2] Bass, J.; **Improving the Erdős-Ginzburg-Ziv theorem for some non-abelian groups**. J. Number Theory 126 (2007), 217-236.
- [3] Brochero Martínez, F.E., Ribas, Sávio; **Extremal product-one free sequences in $C_q \rtimes_s C_m$** . Submitted. Available at: arxiv.org/pdf/1610.09870.pdf (2016).
- [4] Brochero Martínez, F.E., Ribas, Sávio; **Extremal product-one free sequences in Dihedral and Dicyclic Groups**. Discrete Math. 341 (2018), 570-578.
- [5] Brochero Martínez, F.E., Ribas, Sávio; **The $\{1, s\}$ -weighted Davenport constant in \mathbb{Z}_n and an application in an inverse problem**. Preprint (2018).
- [6] Gao, W., Geroldinger, A., Schmid, W.A.; **Inverse zero-sum problems**. Acta Arith. 128.3 (2007), 245-279.
- [7] Zhuang, J., Gao, W.; **Erdős-Ginzburg-Ziv theorem for dihedral groups of large prime index**. European J. Combin. 26 (2005), 1053-1059.

Thank you!

Sávio Ribas

savio.ribas@gmail.com
savio.ribas@ifmg.edu.br