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In 1847, Gabriel Lamé submitted to the Académie des Sciences in
Paris a short note about the problem of the solution of Fermat's
Diophantine Equation

XP 4+ YP = ZP where p > 3 is a prime.

To this end, he considered a primitive p-th root of the unity

(p = €¥™i/P = cos(27/p) + isin(21/p) and the ring Z[(,] of
cyclotomic integers of exponent p, assuming that Z[(,] was

a UFD.



Dedekind domains

Joseph Liouville, who was a member of the Académie des Sciences,
immediately raised some doubts on Lamé’s proof and, in particular,
on the implicit assumption that the ring Z[(,] was a UFD for every
prime integer p.
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Dedekind domains

In fact, Ernst Kummer (Berlin) had proved already in 1843 that
Z|¢23] was not a UFD.

With Kummer's work on the factorization theory in the case of
cyclotomic integers, one began to pass from the study of
factorization of elements to the study of factorization into prime
ideals, (which might exist even if the element-wise factorization

fails).



Dedekind

Richard Dedekind: each non-zero proper ideal of the ring of
integers of an algebraic number field can be factored in an
essentially unique way as a finite product of prime ideals.



Dedekind

Richard Dedekind: each non-zero proper ideal of the ring of
integers of an algebraic number field can be factored in an
essentially unique way as a finite product of prime ideals.

With E. Noether (1927), S. Mori, K. Kubo, K. Matusita (about
1940), one arrives to the modern notion of Dedekind domain.



Dedekind domains

Theorem. The following conditions are equivalent for an integral
domain R not a field:

(1) Every nonzero proper ideal of factors into prime ideals.

(2) R is Noetherian and its localizations at the maximal ideals are
discrete valuation rings.

(3) Every nonzero fractional ideal of R is invertible.

(4) R is integrally closed, Noetherian, of Krull dimension one (i.e.,
every nonzero prime ideal is maximal).

(5) R is Noetherian, and for any two ideals /, J of R, | C J if and
only if there exists an ideal K of R such that | = JK.

Moreover, if these equivalent conditions hold, the factorization

in (1) is necessarily unique up to the order of the factors.
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For every non-zero ideal / in a Dedekind domain R, the module
R/ is direct sum of finitely many uniserial R-modules.

R any ring, not necessarily commutative, Mg any right R-module.

Mg is uniserial if its lattice of submodules is linearly ordered, that
is, if for any submodules A, B of Mg either AC B or B C A.

Mpg is serial if it is a direct sum of uniserial sumodules.
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Uniserial modules

For every non-zero ideal / in a Dedekind domain R, the R-module
R/I is serial, and this seems to be the motivation because of which
Dedekind domains have such a good behavior as far as product
decompositions of ideals is concerned. Thus we have studied the
right ideals / in a (non-commutative) ring R for which the right
R-module R/! is serial (i.e., a direct sum of finitely many uniserial
right R-modules).
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A possible complication

A possible complication: the behaviour of uniserial modules in the
noncommutative setting, which is as follows.

Two modules U and V are said to have

1. the same monogeny class, denoted [U]y, = [V]m, if there exist
a monomorphism U — V and a monomorphism V — U;

2. the same epigeny class, denoted [U]e = [V]e, if there exist an
epimorphism U — V and an epimorphism V — U.



Weak Krull-Schmidt Theorem

Theorem

[F., T.A.M.S. 1996] Let Uy, ..., Up, Vi, ..., Vi ben+t
non-zero uniserial right modules over a ring R. Then the direct
sums Uy ®---® U, and V1 @ - - - ® V; are isomorphic R-modules if
and only if n =t and there exist two permutations o and T of
{1,2,...,n} such that [Uilm = [V, (j)]lm and [Uile = [V(j)le for
every i =1,2,...,n.



Weak Krull-Schmidt Theorem

Theorem

[F., T.A.M.S. 1996] Let Uy, ..., Up, Vi, ..., Vi ben+t
non-zero uniserial right modules over a ring R. Then the direct
sums Uy ®---® U, and V1 @ - - - ® V; are isomorphic R-modules if
and only if n =t and there exist two permutations o and T of
{1,2,...,n} such that [Uilm = [V, (j)]lm and [Uile = [V(j)le for
every i =1,2,...,n.

Pavel P¥ihoda: an extension of the previous result to direct sums
of infinite families of uniserial modules.
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Coindependent submodules

Let M be a right R-module. A finite set { N; | i € | } of proper
submodules of M is coindependent if N; + ((;; N;) = M for
every i € I, or, equivalently, if the canonical injective mapping

M/ Nie; Ni = @ictM/N; is bijective.



Coindependent submodules

Lemma

Let Ay, ..., A, be proper right ideals of a ring R such that

AiAj = AjA; for every i,j =1,...,n and the family {A1,...,Ap}
is coindependent. Then:



Coindependent submodules

Lemma

Let Ay, ..., A, be proper right ideals of a ring R such that

AiAj = AjA; for every i,j =1,...,n and the family {A1,...,Ap}
is coindependent. Then:

(1) Ar... A =N, Ai



Coindependent submodules

Lemma

Let Ay, ..., A, be proper right ideals of a ring R such that

AiAj = AjA; for every i,j =1,...,n and the family {A1,...,Ap}
is coindependent. Then:

(1) Ar... A =N, Ai

(2) If n > 2, then each A; is a two-sided ideal.



Serial factorizations

Definition. Let R be a ring. A serial factorization of a right ideal
A of R is a factorization A = A; ... A, with {A1,...,A,} a
coindependent family of proper right ideals of R, A;A; = A;A; for
every i,j =1,...,n and R/A; a uniserial module for every
i=1,...,n



Examples

Let R be a commutative PID. Then every non-zero ideal A of R
has a serial factorization. If A is generated by a and

a= up:f1 ...pl is a factorization of a with u an invertible element
and p1, ..., p, non-associate primes, then the serial factorization of
AisA=A;... A, with A; = p,-t"R. (This can be generalized to
non-commutative right Bézout domains, that is, the integral
domains in which every finitely generated right ideal is a principal
right ideal.)
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The example of Dedekind domains

More generally, let R be a commutative Dedekind domain, that is,
an integral domain in which every non-zero ideal factors into a
product of prime ideals. Then every non-zero ideal A of R has a
serial factorization. Namely, let A= P; ... P, be a factorization
of A into a product of prime ideals P; of R. Since R has Krull
dimension one, the non-zero prime ideals P; are maximal ideals

of R.
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The example of Dedekind domains

Without loss of generality, A = Plt1 ... Pt with Py, ..., P, distinct
maximal ideals of R. It is easily seen that R/P" is a uniserial
module of finite composition length t for every integer t > 0 and
every maximal ideal P of R. (The submodules of R/P* are the
modules P'/Pt, i =0,1,2,...,t.) For every non-zero ideal / in a
Dedekind domain R, the module R// is a serial R-module.
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Right ideals with a serial factorization

Theorem. Let R be a ring, A a right ideal of R with a serial
factorization A= A; ... A, and B a right ideal of R containing A.
Then:

(1) B has a serial factorization if and only if either B D A; for
some index i =1,...,n or B is a two-sided ideal of R.

(2) If B has a serial factorization, then the serial factorization of B

is B=(B+ A1)...(B+ A,) (where we are supposed to omit the
factors B + A; equal to R).
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Right ideals with a serial factorization

Two right ideals B, C of R are similar if the right R-modules R/B
and R/C are isomorphic.

Theorem. Let R be a ring, and A, B be two similar right ideals
of R. Suppose that A has a serial factorization. Then:

(1) B has a serial factorization.

(2) Either A= B or the right R-module R/A = R/B is uniserial.



Rigid factorizations

It is possible to generalize to the non-commutative setting the
theory of semirigid GCD domains:

M. Zafrullah, Semirigid GCD domains, Manuscripta Math. 17
(1975), 55—-66.
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Right invariant elements

Let R be a (not necessarily commutative) integral domain.

A non-zero element a € R is right invariant (P. M. Cohn) if

Ra C aR. Left invariant elements are defined in a similar way, and
an element a is invariant if it is left and right invariant, that is, if
Ra = aR # 0.



Right invariant elements

The set Inv(R) of all invariant elements of an integral domain R is
a multiplicatively closed subset of R that contains all invertible
elements of R. Notice that, in an integral domain, an element is
right invertible if and only if it is left invertible.
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Rigid elements

An element a of an integral domain R is rigid if a is non-zero,
non-invertible, and for every x,y, x'y’ € R, a = xy’ = yx’ implies
x = yu or y = xu for some u € R. (Equivalently, for every

x,y, X'y € R, a= xy’ = yx' implies x' = uy’ or y/ = ux’ for some
ueR.)
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Rigid factorizations

We say that an element a of an integral domain R is semirigid if a
is not rigid and a has a factorization a = a; . .. a, where:

(1) Each a; is right invariant and rigid.

(2) The elements a; and a; are right coprime (that is,

aiR + ajR = R) for every i # J,

(3) The elements a;a; and aja; are right associates for every
ij=1,2,....n

We will call such a factorization a = a; ... a,, of a semirigid
element a € R a rigid factorization of a.



Rigid factorizations and right Bézout domains

Theorem. Let R be a right Bézout domain and a € R be a
semirigid element. Let a=a;...a, = by ... by, be two rigid
factorizations of A. Then n = m and there exists a unique
permutation o of {1,..., n} such that a; and b, ;) are right
associates for every i =1,...,n.
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A. Facchini and Z. Nazemian, Serial factorizations of right ideals,
accepted for publication in J. Pure Appl. Algebra, 2018, available
in http://arxiv.org/abs/1802.03786

A. Facchini and M. Fassina, Factorization of elements in
noncommutative rings, I, Comm. Algebra, published online
(2017)
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Describing factorizations

What is the algebraic object that describes the factorizations of an
element in a ring (possibly non-commutative, possibly with
zero-divisors)?

It is the set of (ascending) chains in a partially ordered set. (This
is the analogue of the fact that to describe finite direct-sum
decompositions of a module the convenient algebraic structure is a
commutative monoid, possibly with order-unit).The idea is
essentially taken from P. M. Cohn, Unique factorization domains,
Amer. Math. Monthly 80 (1973), 1-18.
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Describing factorizations

For any ring R with identity, the modular lattice £(Rg) of all right
ideals of R has as a subset the set L,(Rr) :={aR|ac R} of all
principal right ideals of R. The lattice structure on £(Rg) induces
a partial order on L,(Rg).Thus we have a mapping

¢: R — L,(Rgr) and the inclusion €: L,(Rr) — L(Rr), where the
mapping ¢ is an embedding of partially ordered sets, and the
mapping  is order-reversing when R is endowed with the preorder
|;, defined, for every pair of elements a, b of R, by a|,b if ais a left
divisor of b, that is, if there exists an element x € R with

ax = b.The factorizations of any element a € R are described by
the closed interval [aR, R],(rg) of the elements between aR and
R in the partially ordered set L,(Rg). Thus an element a€ R is a
left irreducible element if and only if a # 0 and the interval

[aR, R].,(rg) has exactly two elements.



Describing factorizations

Theorem Let a be an element of a ring R,
F(a) :={(a1,a2,...,an) |n>1, 2, €R, a1a2...a,=2a}
the set of all factorizations of a, and
Co:={(aR, i, b,...,ln—1,R) | n > 1,/ a principal right ideal of R}

the set of all finite chains of principal right ideals from aR to Rg.
Let f: F(a) — C, be the mapping defined by

f(ai,az,...,an) = (aR = a1a32...a,R, 2132 ... ap—1R, ..., a1R,R)

for every (a1, a2, ...,an) € F(a). Then the mapping f is surjective,
and two factorizations in F(a) are mapped via f to the same
element of C, if and only if they are equivalent factorizations of a.



Describing factorizations

Here two factorizations (a1, a2, ..., an), (b1, b2, ..., bm) of an
element a € R are equivalent if n = m and there exist

Ui, Vi, U2, Vo, ..., Un—1,Vp—1 € R and t; € r.ann(a1az...aj_1Uj_1)
for every i = 1,2,...,nsuch that ujv; — 1 € r.anng(a1az ... a;) for
every i=1,2,...,n—1 and

(bl, by, ..., bm) = (31 Uy, viasup + to, voaszusz + t3, ..., Vp_1an + t,,).



Describing factorizations

Here two factorizations (a1, a2, ..., an), (b1, b2, ..., bm) of an
element a € R are equivalent if n = m and there exist

Ui, Vi, U2, Vo, ..., Un—1,Vp—1 € R and t; € r.ann(a1az...aj_1Uj_1)
for every i = 1,2,...,nsuch that ujv; — 1 € r.anng(a1az ... a;) for
every i=1,2,...,n—1 and

(b1, b2, ..., bm) = (aru1, viagus + tp, voazuz + t3,..., Vo_1an + tn).
(Two factorizations (a1, a2, ..., an), (b1, b2, ..., by) into right
regular elements are equivalent if and only if n = m and there exist
ui, U2, ..., up—1 € U(R) such that

(b1, b2, ..., bm) = (a1u1, U1_132U2, u2_1a3U3, e u;_lla,,).)



Describing factorizations

Nice example concerning right noetherian right chain ring and
factorizations of matrices.



