

FULLY INERT SUBGROUPS OF ABELIAN GROUPS

Paolo Zanardo

Arithmetic and Ideal Theory of Rings and Semigroups
Graz, September 22nd to 26th, 2014.

While studying the so-called *intrinsic algebraic entropy* for endomorphisms of Abelian groups, Dikranjan, Giordano Bruno, Salce, Virili (JPAA, to appear) where led to introduce the notion of fully inert subgroup of an Abelian group G .
Fully inert subgroups are naturally defined objects, that present many interesting features and deserve to be studied independently.

DEFINITION

All groups are assumed to be Abelian.

A subgroup H of (an Abelian group) G is called *fully inert* if $(\phi H + H)/H$ is finite for every $\phi \in \text{End}(G)$.

Finite and finite-index subgroups of G are fully inert. If $L \subseteq G$ is *fully invariant* (i.e., $\phi L \subseteq L$ for every $\phi \in \text{End}(G)$), then L is obviously fully inert.

Our aim is to compare the fully inert subgroups of G with the fully invariant ones, which, in several cases, are well understood.
We don't describe other technical characterizations of fully inert subgroups.

Dikranjan - Giordano Bruno - Salce - Virili, Fully Inert Subgroups of divisible Abelian groups, J. Group Theory 16, 2013.

Such groups extend the classical notion of *quasi-injective* Abelian groups. We don't discuss the results of this paper.

Dikranjan - Salce - PZ, Fully inert subgroups of free Abelian groups, Periodica Math. Hung., 2014.

Goldsmith - Salce - PZ, Fully inert submodules of torsion-free modules over the ring of p -adic integers, Colloquium Math. 136(2), 2014.

Goldsmith - Salce - PZ, Fully inert subgroups of Abelian p -groups, J. Algebra 419, 2014.

Let A, B be subgroups of G . A is *commensurable* with B if both $(A + B)/A$ and $(A + B)/B$ are finite.

Commensurability is an equivalence, [DSZ, Per. Math. Hung.].
Commensurable subgroups are “close”.

PROPOSITION [DGSV, J. GROUP TH. 2013]

If $A, B \subseteq G$ are commensurable, and A is fully inert, then also B is fully inert. In particular, if L is fully invariant in G , and H is commensurable with L , then H is fully inert.

Question. Determine the classes of groups G such that: H fully inert in G implies H commensurable with a fully invariant subgroup.

FREE GROUPS

Results proved in [DSZ], Per. Math. Hung. 2014.

LEMMA

Let G be a free group, H a fully inert subgroup of G . Then G/H is bounded (i.e., $m(G/H) = 0$ for some $m > 0$).

THEOREM

A subgroup H of a free group G is fully inert if and only if it is commensurable with a fully invariant subgroup of G , that is, with nG for some integer $n \geq 0$.

COMPLETE J_p -MODULES

Here $J_p = \hat{\mathbb{Z}}_p$ denotes the ring of p -adic integers. Results proved in [GSZ], Colloquium Math. 2014.

THEOREM

A submodule H of a complete torsion-free J_p -module \hat{A} is fully inert if and only if it is commensurable with a fully invariant submodule, that is with $p^n\hat{A}$, for some $n \geq 0$.

THEOREM

There exist torsion-free J_p -modules X that contain fully inert submodules not commensurable with any fully invariant submodule.

X is constructed using realization theorems of J_p -algebras proved by Goldsmith (after Corner 1960s fundamental theorems).

DIRECT SUMS OF CYCLIC p -GROUPS

Results proved in [GSZ], J. Algebra 2014.

Let $G = \bigoplus_{0 < n < \kappa} G_n$ be a direct sum of cyclic p -groups, where $\kappa \leq \omega$, and G_n is a *nonzero* direct sum of copies of $\mathbb{Z}/p^{c_n}\mathbb{Z}$, where $0 < c_1 < \dots < c_n < \dots$.

LEMMA (BENABDALLAH - EISENSTADT - IRWIN -
POLUIANOV, ACTA MATH. HUNGAR. 1970)

Let $G = \bigoplus_{0 < n < \kappa} G_n$ be as above. Then L is a fully invariant subgroup of G if and only if $L = \bigoplus_{0 < n < \kappa} p^{h(n)} G_n$, where the integers $h(n)$ satisfy the conditions

- (1) $h(n) \leq c_n$ for all $n > 0$;
- (2) $h(i) \leq h(n) \leq h(i) + c_n - c_i$ for all $0 < i < n$.

BOUNDED p -GROUPS

THEOREM

Let H be a fully inert subgroup of a bounded p -group G (i.e., κ is finite). Then H is commensurable with a fully invariant subgroup of G .

The proof requires a crucial lemma and six steps!
(direct proof)

THE GENERAL CASE

For the general case we need some structural arguments.

Let H be an arbitrary subgroup of a p -group G . We denote by H^* the intersection of the fully invariant subgroups of G containing H . We call it the *fully invariant hull* of H .

Let now $G = \bigoplus_{0 < n < \kappa} G_n$ be an unbounded direct sum of cyclic p -groups (i.e., $\kappa = \omega$).

For each $t < \omega$, let $G^t = \bigoplus_{n \geq t} G_n$. For H any subgroup of G , define $H^t = H \cap G^t$ and denote by H^{*t} the fully invariant hull of H^t in G^t .

Crucial result to get the main theorem.

THEOREM

Let H be a fully inert subgroup of the direct sum of cyclic p -groups G . Then there exists $t > 0$ such that $(H^{*t} + H)/H$ is finite.

MAIN THEOREM

A fully inert subgroup H of a direct sum of cyclic p -groups G is commensurable with a fully invariant subgroup of G .

COUNTEREXAMPLES

THEOREM

There exist special p -groups G (constructed by Pierce, 1963) that contain fully inert subgroups not commensurable with any fully invariant subgroup.