

Sets of positive integers closed under product and the number of decimal digits

D. Torrão

26th september 2014

This is joint work with: J.C. Rosales and M.B. Branco

Sets of positive integers closed under product and the number of decimal digits

- > Introduction
- > LD-semigroups
- > Frobenius variety of LD-semigroups
- > The smallest digital semigroup containing a set of positive integers
- > The smallest LD-semigroup containing a set of positive integers

Introduction

- > Introduction
- > LD-semigroups
- > Frobenius variety of LD-semigroups
- > The smallest digital semigroup containing a set of positive integers
- > The smallest LD-semigroup containing a set of positive integers

Introduction

- $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$

Introduction

- $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$
- $\ell(n)$ is the number of digits of a positive integer n written in decimal expansion.

Introduction

- $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$
- $\ell(n)$ is the number of digits of a positive integer n written in decimal expansion.
- A digital semigroup D is a subsemigroup of $(\mathbb{N} \setminus \{0\}, \cdot)$ such that if $d \in D$ then $\{x \in \mathbb{N} \setminus \{0\} \mid \ell(x) = \ell(d)\} \subseteq D$.

Introduction

- $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$
- $\ell(n)$ is the number of digits of a positive integer n written in decimal expansion.
- A digital semigroup D is a subsemigroup of $(\mathbb{N} \setminus \{0\}, \cdot)$ such that if $d \in D$ then $\{x \in \mathbb{N} \setminus \{0\} \mid \ell(x) = \ell(d)\} \subseteq D$.
- A numerical semigroup S is a submonoid of $(\mathbb{N}, +)$ such that $\mathbb{N} \setminus S$ is finite (another definition: such that $\gcd(S) = 1$).

Introduction

- $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$
- $\ell(n)$ is the number of digits of a positive integer n written in decimal expansion.
- A digital semigroup D is a subsemigroup of $(\mathbb{N} \setminus \{0\}, \cdot)$ such that if $d \in D$ then $\{x \in \mathbb{N} \setminus \{0\} \mid \ell(x) = \ell(d)\} \subseteq D$.
- A numerical semigroup S is a submonoid of $(\mathbb{N}, +)$ such that $\mathbb{N} \setminus S$ is finite (another definition: such that $\gcd(S) = 1$).
- The largest integer belonging to $\mathbb{Z} \setminus (S)$ is the Frobenius Number of S , denoted by $F(S)$.

Introduction

- $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$
- $\ell(n)$ is the number of digits of a positive integer n written in decimal expansion.
- A digital semigroup D is a subsemigroup of $(\mathbb{N} \setminus \{0\}, \cdot)$ such that if $d \in D$ then $\{x \in \mathbb{N} \setminus \{0\} \mid \ell(x) = \ell(d)\} \subseteq D$.
- A numerical semigroup S is a submonoid of $(\mathbb{N}, +)$ such that $\mathbb{N} \setminus S$ is finite (another definition: such that $\gcd(S) = 1$).
- The largest integer belonging to $\mathbb{Z} \setminus (S)$ is the Frobenius Number of S , denoted by $F(S)$.
- For $A \subset \mathbb{N}$,
$$\langle A \rangle = \{\lambda_1 x_1 + \dots + \lambda_n x_n \mid n \in \mathbb{N} \setminus \{0\}, x_1, \dots, x_n \in A \text{ and } \lambda_1, \dots, \lambda_n \in \mathbb{N}\}$$

Introduction

- $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$
- $\ell(n)$ is the number of digits of a positive integer n written in decimal expansion.
- A digital semigroup D is a subsemigroup of $(\mathbb{N} \setminus \{0\}, \cdot)$ such that if $d \in D$ then $\{x \in \mathbb{N} \setminus \{0\} \mid \ell(x) = \ell(d)\} \subseteq D$.
- A numerical semigroup S is a submonoid of $(\mathbb{N}, +)$ such that $\mathbb{N} \setminus S$ is finite (another definition: such that $\gcd(S) = 1$).
- The largest integer belonging to $\mathbb{Z} \setminus (S)$ is the Frobenius Number of S , denoted by $F(S)$.
- For $A \subset \mathbb{N}$,
$$\langle A \rangle = \{\lambda_1 x_1 + \dots + \lambda_n x_n \mid n \in \mathbb{N} \setminus \{0\}, x_1, \dots, x_n \in A \text{ and } \lambda_1, \dots, \lambda_n \in \mathbb{N}\}$$
- $L(A) = \{\ell(a) \mid a \in A\}$, for A a subset of $\mathbb{N} \setminus \{0\}$.

LD-semigroups

- > Introduction
- > LD-semigroups
- > Frobenius variety of LD-semigroups
- > The smallest digital semigroup containing a set of positive integers
- > The smallest LD-semigroup containing a set of positive integers

Lemma

If D is a digital semigroup, then $L(D) \cup \{0\}$ is a numerical semigroup.

Lemma

If D is a digital semigroup, then $L(D) \cup \{0\}$ is a numerical semigroup.

A numerical semigroup S is called LD-semigroup if there exists a digital semigroup D such that $S = L(D) \cup \{0\}$.

Lemma

If D is a digital semigroup, then $L(D) \cup \{0\}$ is a numerical semigroup.

A numerical semigroup S is called LD-semigroup if there exists a digital semigroup D such that $S = L(D) \cup \{0\}$.

Let S be a LD-semigroup, then $S = L(D) \cup \{0\}$.

Let $x \in S \setminus \{0\}$, then $x = l(d)$ for some $d \in D$. Then $10^{x-1} \in D$ and thus $10^{2x-2} \in D$. So we have that $l(10^{2x-2}) = 2x - 1 \in L(D) \cup \{0\} = S$

Lemma

If D is a digital semigroup, then $L(D) \cup \{0\}$ is a numerical semigroup.

A numerical semigroup S is called LD-semigroup if there exists a digital semigroup D such that $S = L(D) \cup \{0\}$.

Let S be a LD-semigroup, then $S = L(D) \cup \{0\}$.

Let $x \in S \setminus \{0\}$, then $x = l(d)$ for some $d \in D$. Then $10^{x-1} \in D$ and thus $10^{2x-2} \in D$. So we have that $l(10^{2x-2}) = 2x - 1 \in L(D) \cup \{0\} = S$

Corollary

If S is a LD-semigroup and $x \in S \setminus \{0\}$ then $2x - 1 \in S$

Lemma

If D is a digital semigroup, then $L(D) \cup \{0\}$ is a numerical semigroup.

A numerical semigroup S is called LD-semigroup if there exists a digital semigroup D such that $S = L(D) \cup \{0\}$.

Let S be a LD-semigroup, then $S = L(D) \cup \{0\}$.

Let $x \in S \setminus \{0\}$, then $x = l(d)$ for some $d \in D$. Then $10^{x-1} \in D$ and thus $10^{2x-2} \in D$. So we have that $l(10^{2x-2}) = 2x - 1 \in L(D) \cup \{0\} = S$

Corollary

If S is a LD-semigroup and $x \in S \setminus \{0\}$ then $2x - 1 \in S$

Remark

Observe that not every numerical semigroup is a LD-semigroup.

For example, $S = \langle 4, 5 \rangle$ is not a LD-semigroup, because $2 \times 4 - 1 \notin S$.

Lemma

Let x and y be positive integers. Then $\ell(xy) \in \{\ell(x) + \ell(y), \ell(x) + \ell(y) - 1\}$.

Lemma

Let x and y be positive integers. Then $\ell(xy) \in \{\ell(x) + \ell(y), \ell(x) + \ell(y) - 1\}$.

Theorem

Let S be a numerical semigroup. The following conditions are equivalent.

- 1) S is a LD-semigroup.
- 2) If $a, b \in S \setminus \{0\}$ then $a + b - 1 \in S$.

Lemma

Let x and y be positive integers. Then $\ell(xy) \in \{\ell(x) + \ell(y), \ell(x) + \ell(y) - 1\}$.

Theorem

Let S be a numerical semigroup. The following conditions are equivalent.

- 1) S is a LD-semigroup.
- 2) If $a, b \in S \setminus \{0\}$ then $a + b - 1 \in S$.

Let $\mathcal{D} = \{D \mid D \text{ is a digital semigroup}\}$ and let $\mathcal{L} = \{S \mid S \text{ is a LD-semigroup}\}$.

Lemma

Let x and y be positive integers. Then $\ell(xy) \in \{\ell(x) + \ell(y), \ell(x) + \ell(y) - 1\}$.

Theorem

Let S be a numerical semigroup. The following conditions are equivalent.

- 1) S is a LD-semigroup.
- 2) If $a, b \in S \setminus \{0\}$ then $a + b - 1 \in S$.

Let $\mathcal{D} = \{D \mid D \text{ is a digital semigroup}\}$ and let $\mathcal{L} = \{S \mid S \text{ is a LD-semigroup}\}$.

Corollary

The correspondence $\varphi : \mathcal{D} \rightarrow \mathcal{L}$, defined by $\varphi(D) = L(D) \cup \{0\}$, is a bijective map. Furthermore its inverse is the map $\theta : \mathcal{L} \rightarrow \mathcal{D}$,

$$\theta(S) = \{a \in \mathbb{N} \setminus \{0\} \mid \ell(a) \in S\}.$$

So,

$$\mathcal{D} = \{\theta(S) \mid S \text{ is a LD-semigroup}\}.$$

Frobenius variety of LD-semigroups

- > Introduction
- > LD-semigroups
- > **Frobenius variety of LD-semigroups**
- > The smallest digital semigroup containing a set of positive integers
- > The smallest LD-semigroup containing a set of positive integers

Frobenius variety of LD-semigroups

A Frobenius variety is a nonempty set \mathcal{V} of numerical semigroups fulfilling the following conditions:

1. if S and T are in \mathcal{V} , then so is $S \cap T$;
2. if S is in \mathcal{V} and it is not equal to \mathbb{N} , then $S \cup \{F(S)\}$ is in \mathcal{V} .

Frobenius variety of LD-semigroups

A Frobenius variety is a nonempty set \mathcal{V} of numerical semigroups fulfilling the following conditions:

1. if S and T are in \mathcal{V} , then so is $S \cap T$;
2. if S is in \mathcal{V} and it is not equal to \mathbb{N} , then $S \cup \{F(S)\}$ is in \mathcal{V} .

Proposition

Let $\mathcal{L} = \{S \mid S \text{ is a LD-semigroup}\}$. The set \mathcal{L} is a Frobenius variety.

Frobenius variety of LD-semigroups

A graph is a pair $G = (V, E)$, where V is a nonempty set and E is a subset of $\{(v, w) \in V \times V \mid v \neq w\}$. The elements of V are called vertices of G and the elements of E are its edges. A path of length n connecting the vertices x and y of G is a sequence of distinct edges of the form (v_0, v_1) , $(v_1, v_2), \dots, (v_{n-1}, v_n)$ such that $v_0 = x$ and $v_n = y$. A graph $G = (V, E)$ is a tree if there exists a vertex r (known as the root of G) such that for every other vertex x there exist a unique path connecting x and r . If (x, y) is an edge of a tree, then we say that x is a son of y .

Frobenius variety of LD-semigroups

A graph is a pair $G = (V, E)$, where V is a nonempty set and E is a subset of $\{(v, w) \in V \times V \mid v \neq w\}$. The elements of V are called vertices of G and the elements of E are its edges. A path of length n connecting the vertices x and y of G is a sequence of distinct edges of the form (v_0, v_1) , $(v_1, v_2), \dots, (v_{n-1}, v_n)$ such that $v_0 = x$ and $v_n = y$. A graph $G = (V, E)$ is a tree if there exists a vertex r (known as the root of G) such that for every other vertex x there exist a unique path connecting x and r . If (x, y) is an edge of a tree, then we say that x is a son of y .

Let $\mathcal{L} = \{S \mid S \text{ is a LD-semigroup}\}$. We define the graph $G(\mathcal{L})$ as the graph whose vertices are the elements of \mathcal{L} and $(S, S') \in \mathcal{L} \times \mathcal{L}$ is an edge if $S' = S \cup \{F(S)\}$.

Frobenius variety of LD-semigroups

A graph is a pair $G = (V, E)$, where V is a nonempty set and E is a subset of $\{(v, w) \in V \times V \mid v \neq w\}$. The elements of V are called vertices of G and the elements of E are its edges. A path of length n connecting the vertices x and y of G is a sequence of distinct edges of the form (v_0, v_1) , $(v_1, v_2), \dots, (v_{n-1}, v_n)$ such that $v_0 = x$ and $v_n = y$. A graph $G = (V, E)$ is a tree if there exists a vertex r (known as the root of G) such that for every other vertex x there exist a unique path connecting x and r . If (x, y) is an edge of a tree, then we say that x is a son of y .

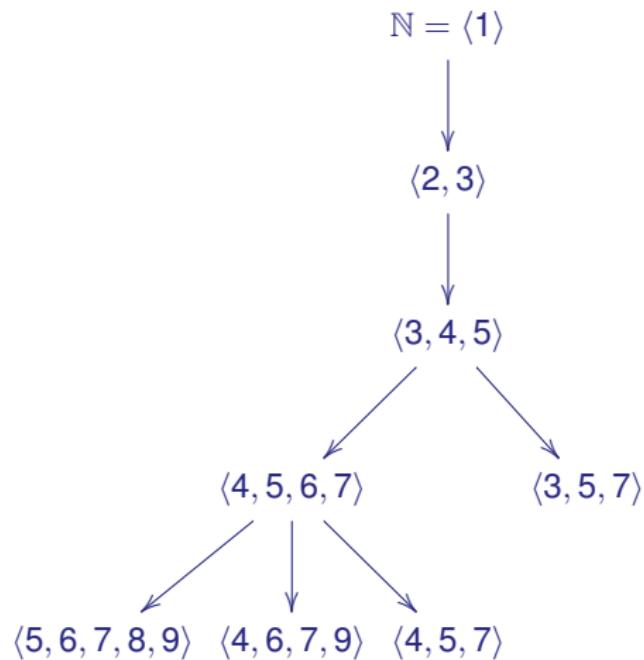
Let $\mathcal{L} = \{S \mid S \text{ is a LD-semigroup}\}$. We define the graph $G(\mathcal{L})$ as the graph whose vertices are the elements of \mathcal{L} and $(S, S') \in \mathcal{L} \times \mathcal{L}$ is an edge if $S' = S \cup \{F(S)\}$.

Theorem

The graph $G(\mathcal{L})$ is a tree rooted in \mathbb{N} . Moreover, the sons of a vertex $S \in \mathcal{L}$ are $S \setminus \{x_1\}, \dots, S \setminus \{x_l\}$ with
$$\{x_1, \dots, x_l\} = \{x \in \text{msg}(S) \mid x > F(S) \text{ and } S \setminus \{x\} \in \mathcal{L}\}$$

Frobenius variety of LD-semigroups

Figure: The tree of LD-numerical semigroups



The smallest digital semigroup containing a set of positive integers

- > Introduction
- > LD-semigroups
- > Frobenius variety of LD-semigroups
- > The smallest digital semigroup containing a set of positive integers
- > The smallest LD-semigroup containing a set of positive integers

The smallest digital semigroup containing a set of positive integers

Lemma

The intersection of digital semigroups is also a digital semigroup.

The smallest digital semigroup containing a set of positive integers

Lemma

The intersection of digital semigroups is also a digital semigroup.

Given $X \subseteq \mathbb{N} \setminus \{0\}$, we denote by $\mathcal{D}(X)$ the intersection of all digital semigroups containing X

The smallest digital semigroup containing a set of positive integers

Lemma

The intersection of digital semigroups is also a digital semigroup.

Given $X \subseteq \mathbb{N} \setminus \{0\}$, we denote by $\mathcal{D}(X)$ the intersection of all digital semigroups containing X

$\mathcal{D}(X)$ is the smallest (with respect to set inclusion) digital semigroup containing X

The smallest digital semigroup containing a set of positive integers

Lemma

The intersection of digital semigroups is also a digital semigroup.

Given $X \subseteq \mathbb{N} \setminus \{0\}$, we denote by $\mathcal{D}(X)$ the intersection of all digital semigroups containing X

$\mathcal{D}(X)$ is the smallest (with respect to set inclusion) digital semigroup containing X

Given $A \subseteq \mathbb{N}$, we denote by $\mathcal{L}(A)$ the intersection of all LD-semigroups containing A . It is clear that $\mathcal{L}(A)$ is a submonoid of $(\mathbb{N}, +)$

The smallest digital semigroup containing a set of positive integers

Lemma

The intersection of digital semigroups is also a digital semigroup.

Given $X \subseteq \mathbb{N} \setminus \{0\}$, we denote by $\mathcal{D}(X)$ the intersection of all digital semigroups containing X

$\mathcal{D}(X)$ is the smallest (with respect to set inclusion) digital semigroup containing X

Given $A \subseteq \mathbb{N}$, we denote by $\mathcal{L}(A)$ the intersection of all LD-semigroups containing A . It is clear that $\mathcal{L}(A)$ is a submonoid of $(\mathbb{N}, +)$

Proposition

Let A be a nonempty subset of $\mathbb{N} \setminus \{0\}$. Then $\mathcal{L}(A)$ is a LD-semigroup. Moreover, $\mathcal{L}(A)$ is the smallest LD-semigroup containing A .

The smallest digital semigroup containing a set of positive integers

Proposition

Let X be a nonempty subset of $\mathbb{N} \setminus \{0\}$. Then S is the smallest LD-semigroup containing $L(X)$ if and only if $\theta(S)$ is the smallest digital semigroup containing X .

Given a positive integer n , we denote by $\triangle(n) = \{x \in \mathbb{N} \setminus \{0\} \mid \ell(x) = n\}$.

The smallest digital semigroup containing a set of positive integers

Proposition

Let X be a nonempty subset of $\mathbb{N} \setminus \{0\}$. Then S is the smallest LD-semigroup containing $L(X)$ if and only if $\theta(S)$ is the smallest digital semigroup containing X .

Given a positive integer n , we denote by $\Delta(n) = \{x \in \mathbb{N} \setminus \{0\} \mid \ell(x) = n\}$.

Example

Let us compute the smallest digital semigroup that contains $\{1235, 54321\}$

The smallest LD-semigroup that contains $L(1235, 54321) = \{4, 5\}$ must contain the number 7 ($2x - 1 \in S$)

So, $\langle 4, 5, 7 \rangle$ is a LD-semigroup.

Hence $\mathcal{L}(\{4, 5\}) = \langle 4, 5, 7 \rangle$.

Applying the previous result, we get that

$$\mathcal{D}(\{1235, 54321\}) = \theta(\langle 4, 5, 7 \rangle) = \mathbb{N} \setminus (\Delta(1) \cup \Delta(2) \cup \Delta(3) \cup \Delta(6) \cup \{0\})$$

The smallest LD-semigroup containing a set of positive integers

- > Introduction
- > LD-semigroups
- > Frobenius variety of LD-semigroups
- > The smallest digital semigroup containing a set of positive integers
- > The smallest LD-semigroup containing a set of positive integers

Proposition

Let S be a numerical semigroup minimally generated by $\{n_1, \dots, n_p\}$. The following conditions are equivalent:

1. S is a LD-semigroup;
2. if $i, j \in \{1, \dots, p\}$ then $n_i + n_j - 1 \in S$;

Proposition

Let S be a numerical semigroup minimally generated by $\{n_1, \dots, n_p\}$. The following conditions are equivalent:

1. S is a LD-semigroup;
2. if $i, j \in \{1, \dots, p\}$ then $n_i + n_j - 1 \in S$;

algorithm

Input: A set of positive integers A .

Output: The minimal system of generators of the smallest LD-semigroup containing the set A .

- 1) $B = \text{msg}(\langle A \rangle)$
- 2) if $a + b - 1 \in \langle B \rangle$ for all $a, b \in B$, then return B .
- 3) $A = B \cup \{a + b - 1 \mid a, b \in B \text{ and } a + b - 1 \notin \langle B \rangle\}$ and go to 1).

Example

Let us compute the smallest LD-semigroup that contain $\{5\}$. To this end we use the previous algorithm. The values arising for A and B are:

- $A = \{5\}$;
- $B = \{5\}$;
- $A = \{5, 9\}$;
- $B = \{5, 9\}$;
- $A = \{5, 9, 13, 17\}$;
- $B = \{5, 9, 13, 17\}$;
- $A = \{5, 9, 13, 17, 21\}$;
- $B = \{5, 9, 13, 17, 21\}$.

Therefore the smallest LD-semigroup containing $\{5\}$ is
 $\langle 5, 9, 13, 17, 21 \rangle = \{0, 5, 9, 10, 13, 14, 15, 17, \rightarrow\}$.

Thank you!