

## ON AN EXTENSION OF THE CLASSICAL ZERO DIVISOR GRAPH

Fouad Taraza  
Mohammed V-Agdal University, Rabat, Morocco

Joint work with D. Bennis and J. Mikram

# OUTLINE

## 1 MOTIVATION AND PRELIMINARIES

## 2 WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

## 3 DIAMETER OF EXTENDED GRAPHS OF RINGS

## 4 CYCLES IN EXTENDED GRAPHS OF RINGS

# MOTIVATION AND PRELIMINARIES

## NOTATIONS

- Throughout this talk all rings are commutative with identity element.
- $Z(R)$  denotes the set of zero divisors of  $R$ , in particular  $Z(R)^* := Z(R) \setminus \{0\}$ .
- $Ann(x)$  denotes the annihilator of an element  $x$  of  $R$ .
- For an ideal  $I$  of  $R$ ,  $\sqrt{I}$  means the radical of  $I$ , in particular,  $Nil(R) := \sqrt{0}$  is the nilradical of  $R$ .
- The ring  $\mathbb{Z}/n\mathbb{Z}$  of the residues modulo an integer  $n$  will be noted by  $\mathbb{Z}_n$ .
- $T(R) = S^{-1}R$ , where  $S$  is the set of regular elements, is the total quotient ring of  $R$ .
- For a non-zero nilpotent element  $x$  of  $R$ ,  $n_x$  denotes the index of nilpotency of  $x$ .

# MOTIVATION AND PRELIMINARIES

## NOTATIONS

- Throughout this talk all rings are commutative with identity element.
- $Z(R)$  denotes the set of zero divisors of  $R$ , in particular  $Z(R)^* := Z(R) \setminus \{0\}$ .
- $\text{Ann}(x)$  denotes the annihilator of an element  $x$  of  $R$ .
- For an ideal  $I$  of  $R$ ,  $\sqrt{I}$  means the radical of  $I$ , in particular,  $\text{Nil}(R) := \sqrt{0}$  is the nilradical of  $R$ .
- The ring  $\mathbb{Z}/n\mathbb{Z}$  of the residues modulo an integer  $n$  will be noted by  $\mathbb{Z}_n$ .
- $T(R) = S^{-1}R$ , where  $S$  is the set of regular elements, is the total quotient ring of  $R$ .
- For a non-zero nilpotent element  $x$  of  $R$ ,  $n_x$  denotes the index of nilpotency of  $x$ .

# MOTIVATION AND PRELIMINARIES

## NOTATIONS

- Throughout this talk all rings are commutative with identity element.
- $Z(R)$  denotes the set of zero divisors of  $R$ , in particular  $Z(R)^* := Z(R) \setminus \{0\}$ .
- $Ann(x)$  denotes the annihilator of an element  $x$  of  $R$ .
- For an ideal  $I$  of  $R$ ,  $\sqrt{I}$  means the radical of  $I$ , in particular,  $Nil(R) := \sqrt{0}$  is the nilradical of  $R$ .
- The ring  $\mathbb{Z}/n\mathbb{Z}$  of the residues modulo an integer  $n$  will be noted by  $\mathbb{Z}_n$ .
- $T(R) = S^{-1}R$ , where  $S$  is the set of regular elements, is the total quotient ring of  $R$ .
- For a non-zero nilpotent element  $x$  of  $R$ ,  $n_x$  denotes the index of nilpotency of  $x$ .

## MOTIVATION AND PRELIMINARIES

### NOTATIONS

- Throughout this talk all rings are commutative with identity element.
- $Z(R)$  denotes the set of zero divisors of  $R$ , in particular  $Z(R)^* := Z(R) \setminus \{0\}$ .
- $Ann(x)$  denotes the annihilator of an element  $x$  of  $R$ .
- For an ideal  $I$  of  $R$ ,  $\sqrt{I}$  means the radical of  $I$ , in particular,  $Nil(R) := \sqrt{0}$  is the nilradical of  $R$ .
- The ring  $\mathbb{Z}/n\mathbb{Z}$  of the residues modulo an integer  $n$  will be noted by  $\mathbb{Z}_n$ .
- $T(R) = S^{-1}R$ , where  $S$  is the set of regular elements, is the total quotient ring of  $R$ .
- For a non-zero nilpotent element  $x$  of  $R$ ,  $n_x$  denotes the index of nilpotency of  $x$ .

# MOTIVATION AND PRELIMINARIES

## NOTATIONS

- Throughout this talk all rings are commutative with identity element.
- $Z(R)$  denotes the set of zero divisors of  $R$ , in particular  $Z(R)^* := Z(R) \setminus \{0\}$ .
- $Ann(x)$  denotes the annihilator of an element  $x$  of  $R$ .
- For an ideal  $I$  of  $R$ ,  $\sqrt{I}$  means the radical of  $I$ , in particular,  $Nil(R) := \sqrt{0}$  is the nilradical of  $R$ .
- The ring  $\mathbb{Z}/n\mathbb{Z}$  of the residues modulo an integer  $n$  will be noted by  $\mathbb{Z}_n$ .
- $T(R) = S^{-1}R$ , where  $S$  is the set of regular elements, is the total quotient ring of  $R$ .
- For a non-zero nilpotent element  $x$  of  $R$ ,  $n_x$  denotes the index of nilpotency of  $x$ .

## MOTIVATION AND PRELIMINARIES

### NOTATIONS

- Throughout this talk all rings are commutative with identity element.
- $Z(R)$  denotes the set of zero divisors of  $R$ , in particular  $Z(R)^* := Z(R) \setminus \{0\}$ .
- $Ann(x)$  denotes the annihilator of an element  $x$  of  $R$ .
- For an ideal  $I$  of  $R$ ,  $\sqrt{I}$  means the radical of  $I$ , in particular,  $Nil(R) := \sqrt{0}$  is the nilradical of  $R$ .
- The ring  $\mathbb{Z}/n\mathbb{Z}$  of the residues modulo an integer  $n$  will be noted by  $\mathbb{Z}_n$ .
- $T(R) = S^{-1}R$ , where  $S$  is the set of regular elements, is the total quotient ring of  $R$ .
- For a non-zero nilpotent element  $x$  of  $R$ ,  $n_x$  denotes the index of nilpotency of  $x$ .

## MOTIVATION AND PRELIMINARIES

### NOTATIONS

- Throughout this talk all rings are commutative with identity element.
- $Z(R)$  denotes the set of zero divisors of  $R$ , in particular  $Z(R)^* := Z(R) \setminus \{0\}$ .
- $Ann(x)$  denotes the annihilator of an element  $x$  of  $R$ .
- For an ideal  $I$  of  $R$ ,  $\sqrt{I}$  means the radical of  $I$ , in particular,  $Nil(R) := \sqrt{0}$  is the nilradical of  $R$ .
- The ring  $\mathbb{Z}/n\mathbb{Z}$  of the residues modulo an integer  $n$  will be noted by  $\mathbb{Z}_n$ .
- $T(R) = S^{-1}R$ , where  $S$  is the set of regular elements, is the total quotient ring of  $R$ .
- For a non-zero nilpotent element  $x$  of  $R$ ,  $n_x$  denotes the index of nilpotency of  $x$ .

## MOTIVATION AND PRELIMINARIES

We recall some basic notions on graph theory.

### DEFINITION

- Let  $G$  be a (undirected) graph. We say that  $G$  is connected if there is a path between any two distinct vertices.
- $d(x, y)$  denotes the distance between  $x$  and  $y$  in  $G$ , is the length of a shortest path connecting  $x$  and  $y$  and if no such path exists, we set  $d(x, y) = \infty$  (by convention  $d(x, x) = 0$ ).
- The diameter of the graph  $G$  is the quantity  $\text{diam}(G) := \sup\{d(x, y) | x \text{ and } y \text{ are vertices of } G\}$ .
- A cycle of length  $n \in \mathbb{N}^*$  in  $G$  is a path of the form  $x_1 - x_2 - \cdots - x_n - x_1$ , where  $x_i \neq x_j$  when  $i \neq j$ .

## MOTIVATION AND PRELIMINARIES

We recall some basic notions on graph theory.

### DEFINITION

- Let  $G$  be a (undirected) graph. We say that  $G$  is connected if there is a path between any two distinct vertices.
- $d(x, y)$  denotes the distance between  $x$  and  $y$  in  $G$ , is the length of a shortest path connecting  $x$  and  $y$  and if no such path exists, we set  $d(x, y) = \infty$  (by convention  $d(x, x) = 0$ ).
- The diameter of the graph  $G$  is the quantity  $\text{diam}(G) := \sup\{d(x, y) | x \text{ and } y \text{ are vertices of } G\}$ .
- A cycle of length  $n \in \mathbb{N}^*$  in  $G$  is a path of the form  $x_1 - x_2 - \cdots - x_n - x_1$ , where  $x_i \neq x_j$  when  $i \neq j$ .

## MOTIVATION AND PRELIMINARIES

We recall some basic notions on graph theory.

### DEFINITION

- Let  $G$  be a (undirected) graph. We say that  $G$  is connected if there is a path between any two distinct vertices.
- $d(x, y)$  denotes the distance between  $x$  and  $y$  in  $G$ , is the length of a shortest path connecting  $x$  and  $y$  and if no such path exists, we set  $d(x, y) = \infty$  (by convention  $d(x, x) = 0$ ).
- The diameter of the graph  $G$  is the quantity  $\text{diam}(G) := \sup\{d(x, y) | x \text{ and } y \text{ are vertices of } G\}$ .
- A cycle of length  $n \in \mathbb{N}^*$  in  $G$  is a path of the form  $x_1 - x_2 - \cdots - x_n - x_1$ , where  $x_i \neq x_j$  when  $i \neq j$ .

## MOTIVATION AND PRELIMINARIES

We recall some basic notions on graph theory.

### DEFINITION

- Let  $G$  be a (undirected) graph. We say that  $G$  is connected if there is a path between any two distinct vertices.
- $d(x, y)$  denotes the distance between  $x$  and  $y$  in  $G$ , is the length of a shortest path connecting  $x$  and  $y$  and if no such path exists, we set  $d(x, y) = \infty$  (by convention  $d(x, x) = 0$ ).
- The diameter of the graph  $G$  is the quantity  $\text{diam}(G) := \sup\{d(x, y) | x \text{ and } y \text{ are vertices of } G\}$ .
- A cycle of length  $n \in \mathbb{N}^*$  in  $G$  is a path of the form  $x_1 - x_2 - \cdots - x_n - x_1$ , where  $x_i \neq x_j$  when  $i \neq j$ .

## MOTIVATION AND PRELIMINARIES

### DEFINITION

- The girth of  $G$ , denoted by  $gr(G)$ , is the length of a shortest cycle in  $G$ , provided  $G$  contains a cycle, otherwise,  $gr(G) = \infty$ .
- A graph  $G$  is said to be complete if any two distinct vertices are adjacent.

## MOTIVATION AND PRELIMINARIES

### DEFINITION

- The girth of  $G$ , denoted by  $gr(G)$ , is the length of a shortest cycle in  $G$ , provided  $G$  contains a cycle, otherwise,  $gr(G) = \infty$ .
- A graph  $G$  is said to be complete if any two distinct vertices are adjacent.

## MOTIVATION AND PRELIMINARIES

We give a brief historical note on zero divisor graph:

- In 1998, Anderson and Livingston introduced the zero divisor graph of a commutative ring and started the study of the relation between ring-theoretic properties and graph theoretic ones.

### DEFINITION (1998, ANDERSON AND LIVINGSTON)

The zero-divisor graph of a ring  $R$ , denoted by  $\Gamma(R)$ , is the simple graph associated to  $R$  such that its vertex set consists of all its non-zero zero divisors and that two distinct vertices are joined by an edge if and only if the product of these two vertices is zero.

## MOTIVATION AND PRELIMINARIES

We give a brief historical note on zero divisor graph:

- In 1998, Anderson and Livingston introduced the zero divisor graph of a commutative ring and started the study of the relation between ring-theoretic properties and graph theoretic ones.

### DEFINITION (1998, ANDERSON AND LIVINGSTON)

The zero-divisor graph of a ring  $R$ , denoted by  $\Gamma(R)$ , is the simple graph associated to  $R$  such that its vertex set consists of all its non-zero zero divisors and that two distinct vertices are joined by an edge if and only if the product of these two vertices is zero.

## MOTIVATION AND PRELIMINARIES

We give a brief historical note on zero divisor graph:

- In 1998, Anderson and Livingston introduced the zero divisor graph of a commutative ring and started the study of the relation between ring-theoretic properties and graph theoretic ones.

### DEFINITION (1998, ANDERSON AND LIVINGSTON)

The zero-divisor graph of a ring  $R$ , denoted by  $\Gamma(R)$ , is the simple graph associated to  $R$  such that its vertex set consists of all its non-zero zero divisors and that two distinct vertices are joined by an edge if and only if the product of these two vertices is zero.

## MOTIVATION AND PRELIMINARIES

- It was proved, among other things, that  $\Gamma(R)$  is connected with  $diam(\Gamma(R)) \leq 3$  and  $gr(\Gamma(R)) \in \{3, 4, \infty\}$ .
- Since then, the zero divisor graphs of commutative rings have attracted the attention of several researchers, among them Akbari; D.D. Anderson; D.F. Anderson; Axtell; Badawi; Coykendall; Frazier; Lauve; Lauveni; Levy; Livingston; Lucas; Maimani; Mulay; Naseer; Stickles; Smith; Wang; Wu; Yassemi ...

## MOTIVATION AND PRELIMINARIES

- It was proved, among other things, that  $\Gamma(R)$  is connected with  $diam(\Gamma(R)) \leq 3$  and  $gr(\Gamma(R)) \in \{3, 4, \infty\}$ .
- Since then, the zero divisor graphs of commutative rings have attracted the attention of several researchers, among them Akbari; D.D. Anderson; D.F. Anderson; Axtell; Badawi; Coykendall; Frazier; Lauve; Lauveni; Levy; Livingston; Lucas; Maimani; Mulay; Naseer; Stickles; Smith; Wang; Wu; Yassemi ...

## MOTIVATION AND PRELIMINARIES

Also, the zero divisor graph is used by R. Levy and J. Shapiro to characterize when  $T(R)$  is von Neumann regular. In fact, they used for that the notion of complemented graph defined as follows:

### DEFINITION

Let  $x$  and  $y$  distinct vertices of  $\Gamma(R)$ .

- We say that  $x$  and  $y$  are orthogonal, written  $x \perp y$ , if  $x$  and  $y$  are adjacent and there is no vertex  $z$  of  $\Gamma(R)$  which is adjacent to both  $x$  and  $y$ , i.e., the edge  $x - y$  is not a part of any triangle of  $\Gamma(R)$ .
- We say that  $\Gamma(R)$  is complemented if for each vertex  $x$  of  $\Gamma(R)$ , there is a vertex  $y$  of  $\Gamma(R)$  such that  $x \perp y$ .

## MOTIVATION AND PRELIMINARIES

Also, the zero divisor graph is used by R. Levy and J. Shapiro to characterize when  $T(R)$  is von Neumann regular. In fact, they used for that the notion of complemented graph defined as follows:

### DEFINITION

Let  $x$  and  $y$  distinct vertices of  $\Gamma(R)$ .

- We say that  $x$  and  $y$  are orthogonal, written  $x \perp y$ , if  $x$  and  $y$  are adjacent and there is no vertex  $z$  of  $\Gamma(R)$  which is adjacent to both  $x$  and  $y$ , i.e., the edge  $x - y$  is not a part of any triangle of  $\Gamma(R)$ .
- We say that  $\Gamma(R)$  is complemented if for each vertex  $x$  of  $\Gamma(R)$ , there is a vertex  $y$  of  $\Gamma(R)$  such that  $x \perp y$ .

## MOTIVATION AND PRELIMINARIES

Also, the zero divisor graph is used by R. Levy and J. Shapiro to characterize when  $T(R)$  is von Neumann regular. In fact, they used for that the notion of complemented graph defined as follows:

### DEFINITION

Let  $x$  and  $y$  distinct vertices of  $\Gamma(R)$ .

- We say that  $x$  and  $y$  are orthogonal, written  $x \perp y$ , if  $x$  and  $y$  are adjacent and there is no vertex  $z$  of  $\Gamma(R)$  which is adjacent to both  $x$  and  $y$ , i.e., the edge  $x - y$  is not a part of any triangle of  $\Gamma(R)$ .
- We say that  $\Gamma(R)$  is complemented if for each vertex  $x$  of  $\Gamma(R)$ , there is a vertex  $y$  of  $\Gamma(R)$  such that  $x \perp y$ .

## MOTIVATION AND PRELIMINARIES

### THEOREM (2002, ANDERSON, D.F., LEVY, R., AND SHAPIRO)

*The following statements are equivalent for a reduced commutative ring  $R$ .*

- $T(R)$  is von Neumann regular.
- $\Gamma(R)$  is complemented.

For that the Key Lemma was the following result.

#### LEMMA

*Let  $R$  be a ring and  $a, b \in Z(R)^*$ . Then the following statements are equivalent:*

- $a \perp b$ ,  $a^2 \neq 0$  and  $b^2 \neq 0$ .
- $ab = 0$  and  $a + b$  is a regular element of  $R$ .

## MOTIVATION AND PRELIMINARIES

### THEOREM (2002, ANDERSON, D.F., LEVY, R., AND SHAPIRO)

*The following statements are equivalent for a reduced commutative ring  $R$ .*

- $T(R)$  is von Neumann regular.
- $\Gamma(R)$  is complemented.

For that the Key Lemma was the following result.

#### LEMMA

*Let  $R$  be a ring and  $a, b \in Z(R)^*$ . Then the following statements are equivalent:*

- $a \perp b$ ,  $a^2 \neq 0$  and  $b^2 \neq 0$ .
- $ab = 0$  and  $a + b$  is a regular element of  $R$ .

## MOTIVATION AND PRELIMINARIES

### THEOREM (2002, ANDERSON, D.F., LEVY, R., AND SHAPIRO)

*The following statements are equivalent for a reduced commutative ring  $R$ .*

- $T(R)$  is von Neumann regular.
- $\Gamma(R)$  is complemented.

For that the Key Lemma was the following result.

#### LEMMA

*Let  $R$  be a ring and  $a, b \in Z(R)^*$ . Then the following statements are equivalent:*

- $a \perp b$ ,  $a^2 \neq 0$  and  $b^2 \neq 0$ .
- $ab = 0$  and  $a + b$  is a regular element of  $R$ .

## MOTIVATION AND PRELIMINARIES

### THEOREM (2002, ANDERSON, D.F., LEVY, R., AND SHAPIRO)

*The following statements are equivalent for a reduced commutative ring  $R$ .*

- $T(R)$  is von Neumann regular.
- $\Gamma(R)$  is complemented.

For that the Key Lemma was the following result.

### LEMMA

*Let  $R$  be a ring and  $a, b \in Z(R)^*$ . Then the following statements are equivalent:*

- $a \perp b$ ,  $a^2 \neq 0$  and  $b^2 \neq 0$ .
- $ab = 0$  and  $a + b$  is a regular element of  $R$ .

## MOTIVATION AND PRELIMINARIES

Inspired by this result and a paper of D.F. Anderson and A. Badawi (2002), we have interested in the following zero divisor graph which is used to give a sufficient condition so that the total quotient ring is zero dimensional.

### DEFINITION

Denoted by  $\bar{\Gamma}(R)$  the simple graph associated to  $R$  with for distinct  $x, y \in Z(R)^*$  the vertices  $x$  and  $y$  are adjacent if and only if there exist two non negative integers  $n$  and  $m$  such that  $x^n y^m = 0$  with  $x^n \neq 0$  and  $y^m \neq 0$ .

- The classical graph  $\Gamma(R)$  is a partial graph of  $\bar{\Gamma}(R)$ .

## MOTIVATION AND PRELIMINARIES

Inspired by this result and a paper of D.F. Anderson and A. Badawi (2002), we have interested in the following zero divisor graph which is used to give a sufficient condition so that the total quotient ring is zero dimensional.

### DEFINITION

Denoted by  $\bar{\Gamma}(R)$  the simple graph associated to  $R$  with for distinct  $x, y \in Z(R)^*$  the vertices  $x$  and  $y$  are adjacent if and only if there exist two non negative integers  $n$  and  $m$  such that  $x^n y^m = 0$  with  $x^n \neq 0$  and  $y^m \neq 0$ .

- The classical graph  $\Gamma(R)$  is a partial graph of  $\bar{\Gamma}(R)$ .

## MOTIVATION AND PRELIMINARIES

Inspired by this result and a paper of D.F. Anderson and A. Badawi (2002), we have interested in the following zero divisor graph which is used to give a sufficient condition so that the total quotient ring is zero dimensional.

### DEFINITION

Denoted by  $\bar{\Gamma}(R)$  the simple graph associated to  $R$  with for distinct  $x, y \in Z(R)^*$  the vertices  $x$  and  $y$  are adjacent if and only if there exist two non negative integers  $n$  and  $m$  such that  $x^n y^m = 0$  with  $x^n \neq 0$  and  $y^m \neq 0$ .

- The classical graph  $\Gamma(R)$  is a partial graph of  $\bar{\Gamma}(R)$ .

## MOTIVATION AND PRELIMINARIES

### DEFINITION

Distinct vertices  $x$  and  $y$  of  $\bar{\Gamma}$  are orthogonal, written  $x \perp_{\bar{\Gamma}} y$ , if  $x$  and  $y$  are adjacent and there is no vertex  $z$  of  $\bar{\Gamma}$  which is adjacent to both  $x$  and  $y$ , i.e., the edge  $x - y$  is not a part of any triangle of  $\bar{\Gamma}$ . We say that  $\bar{\Gamma}$  is complemented if for each vertex  $x$  of  $\bar{\Gamma}$ , there is a vertex  $y$  of  $\bar{\Gamma}$  (called a complement of  $x$ ) such that  $x \perp_{\bar{\Gamma}} y$ .

## MOTIVATION AND PRELIMINARIES

### PROPOSITION

*Let  $R$  be a ring with  $\bar{\Gamma}(R) \neq \Gamma(R)$ . If  $\bar{\Gamma}(R)$  is complemented, then  $T(R)$  is zero-dimensional.*

For that the Key Lemma was the following result.

### LEMMA

*Let  $R$  be a ring and  $x, y \in Z(R)^*$ . If  $x \perp_{\bar{\Gamma}} y$  with  $x^2 \neq 0$  and  $y^2 \neq 0$ , then there are  $n, m \in \mathbb{N}^*$  such that  $x^n y^m = 0$  with  $x^n \neq 0$ ,  $y^m \neq 0$  and  $x^n + y^m$  is a regular element of  $R$ .*

## MOTIVATION AND PRELIMINARIES

### PROPOSITION

Let  $R$  be a ring with  $\overline{\Gamma}(R) \neq \Gamma(R)$ . If  $\overline{\Gamma}(R)$  is complemented, then  $T(R)$  is zero-dimensional.

For that the Key Lemma was the following result.

### LEMMA

Let  $R$  be a ring and  $x, y \in Z(R)^*$ . If  $x \perp_{\overline{\Gamma}} y$  with  $x^2 \neq 0$  and  $y^2 \neq 0$ , then there are  $n, m \in \mathbb{N}^*$  such that  $x^n y^m = 0$  with  $x^n \neq 0$ ,  $y^m \neq 0$  and  $x^n + y^m$  is a regular element of  $R$ .

# WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

## THEOREM

Let  $R$  be a ring. The following statements are equivalent:

- ①  $\bar{\Gamma}(R) = \Gamma(R)$ .
- ②  $R$  satisfies the two following conditions:

- (i) If  $\text{Nil}(R) \neq \{0\}$ , then every nilpotent element has index 2, and
- (ii) For all  $x \in \text{Z}(R) \setminus \text{Nil}(R)$ ,  $\text{Ann}(x^2) = \text{Ann}(x)$ .

# WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

## THEOREM

Let  $R$  be a ring. The following statements are equivalent:

- ①  $\bar{\Gamma}(R) = \Gamma(R)$ .
- ②  $R$  satisfies the two following conditions:

- (i) If  $\text{Nil}(R) \neq \{0\}$ , then every nilpotent element has index 2, and
- (ii) For all  $x \in Z(R) \setminus \text{Nil}(R)$ ,  $\text{Ann}(x^2) = \text{Ann}(x)$ .

# WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

## THEOREM

Let  $R$  be a ring. The following statements are equivalent:

- ①  $\bar{\Gamma}(R) = \Gamma(R)$ .
- ②  $R$  satisfies the two following conditions:

- (I) If  $\text{Nil}(R) \neq \{0\}$ , then every nilpotent element has index 2, and
- (II) For all  $x \in Z(R) \setminus \text{Nil}(R)$ ,  $\text{Ann}(x^2) = \text{Ann}(x)$ .

## WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

### THEOREM

Let  $R$  be a ring. The following statements are equivalent:

- ①  $\bar{\Gamma}(R) = \Gamma(R)$ .
- ②  $R$  satisfies the two following conditions:

- (I) If  $\text{Nil}(R) \neq \{0\}$ , then every nilpotent element has index 2, and
- (II) For all  $x \in Z(R) \setminus \text{Nil}(R)$ ,  $\text{Ann}(x^2) = \text{Ann}(x)$ .

## WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

### COROLLARY

*Let  $R$  be a ring. If  $R$  contains a nilpotent element of index 3, then  $\bar{\Gamma}(R) \neq \Gamma(R)$ .*

### COROLLARY

*Let  $R$  be a reduced ring. Then  $\bar{\Gamma}(R) = \Gamma(R)$ .*

# WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

## COROLLARY

*Let  $R$  be a ring. If  $R$  contains a nilpotent element of index 3, then  $\bar{\Gamma}(R) \neq \Gamma(R)$ .*

## COROLLARY

*Let  $R$  be a reduced ring. Then  $\bar{\Gamma}(R) = \Gamma(R)$ .*

## WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

### COROLLARY

*Let  $R$  be a ring. If  $R$  contains a nilpotent element of index 3, then  $\bar{\Gamma}(R) \neq \Gamma(R)$ .*

### COROLLARY

*Let  $R$  be a reduced ring. Then  $\bar{\Gamma}(R) = \Gamma(R)$ .*

## WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

### PROPOSITION

Let  $(R_i)_{1 \leq i \leq n}$  be a finite family of rings with  $n \in \mathbb{N} \setminus \{0, 1\}$ . Then

$\bar{\Gamma}(\prod_{i=1}^n R_i) = \Gamma(\prod_{i=1}^n R_i)$  if and only if  $R_i$  is reduced for all  $i$ .

## WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

As a simple consequence of Proposition, we determine when the graph  $\bar{\Gamma}(\mathbb{Z}_n)$  coincides with  $\Gamma(\mathbb{Z}_n)$ .

### COROLLARY

Let  $n = \prod_{i=1}^k P_i^{\alpha_i}$  be the prime factorization of an integer  $n$  with  $k \in \mathbb{N}^*$ . Consider

$m := \sup\{\alpha_i \mid 1 \leq i \leq k\}$ . Then  $\bar{\Gamma}(\mathbb{Z}_n) \neq \Gamma(\mathbb{Z}_n)$  if and only if either  $m \geq 3$  or  $(m = 2 \text{ and } k \geq 2)$ .

## WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

As a simple consequence of Proposition, we determine when the graph  $\bar{\Gamma}(\mathbb{Z}_n)$  coincides with  $\Gamma(\mathbb{Z}_n)$ .

### COROLLARY

Let  $n = \prod_{i=1}^k P_i^{\alpha_i}$  be the prime factorization of an integer  $n$  with  $k \in \mathbb{N}^*$ . Consider

$m := \sup\{\alpha_i \mid 1 \leq i \leq k\}$ . Then  $\bar{\Gamma}(\mathbb{Z}_n) \neq \Gamma(\mathbb{Z}_n)$  if and only if either  $m \geq 3$  or  $(m = 2 \text{ and } k \geq 2)$ .

## WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

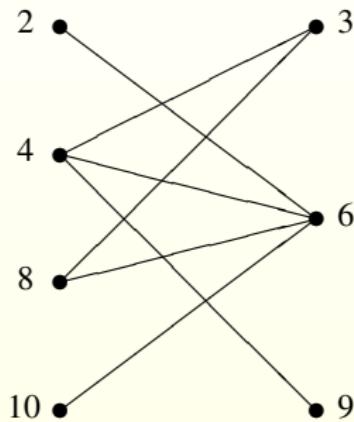
As a simple consequence of Proposition, we determine when the graph  $\bar{\Gamma}(\mathbb{Z}_n)$  coincides with  $\Gamma(\mathbb{Z}_n)$ .

### COROLLARY

Let  $n = \prod_{i=1}^k P_i^{\alpha_i}$  be the prime factorization of an integer  $n$  with  $k \in \mathbb{N}^*$ . Consider

$m := \sup\{\alpha_i \mid 1 \leq i \leq k\}$ . Then  $\bar{\Gamma}(\mathbb{Z}_n) \neq \Gamma(\mathbb{Z}_n)$  if and only if either  $m \geq 3$  or  $(m = 2 \text{ and } k \geq 2)$ .

## EXAMPLE OF RING ( $\bar{\Gamma}(R) \neq \Gamma(R)$ )

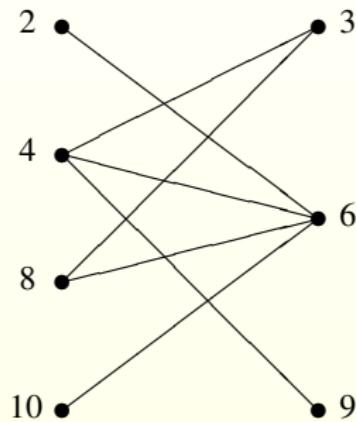


$\Gamma(\mathbb{Z}_{12})$

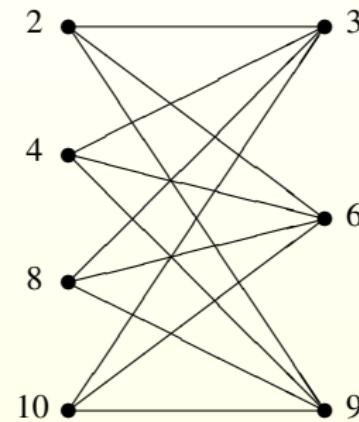


$\bar{\Gamma}(\mathbb{Z}_{12})$

## EXAMPLE OF RING $(\bar{\Gamma}(R) \neq \Gamma(R))$



$\Gamma(\mathbb{Z}_{12})$



$\bar{\Gamma}(\mathbb{Z}_{12})$

WHEN  $\bar{\Gamma}(R)$  AND  $\Gamma(R)$  COINCIDE?

When  $\bar{\Gamma}(R \ltimes M)$  and  $\Gamma(R \ltimes M)$  coincide, where  $R \ltimes M$  is the trivial extension of a ring  $R$  by an  $R$ -module  $M$ , which is the ring whose underling group is  $A \times M$  with multiplication given by  $(r, m)(r', m') = (rr', rm' + r'm)$ .

In the following result  $\text{Ann}_M(a)$ , where  $a \in R$ , denotes the set of all elements of  $M$  annihilated by  $a$ . Also we use  $\text{Ann}(M)$  to denote the annihilator of the  $R$ -module  $M$ .

WHEN  $\bar{\Gamma}(R)$  AND  $\Gamma(R)$  COINCIDE?

When  $\bar{\Gamma}(R \ltimes M)$  and  $\Gamma(R \ltimes M)$  coincide, where  $R \ltimes M$  is the trivial extension of a ring  $R$  by an  $R$ -module  $M$ , which is the ring whose underling group is  $A \times M$  with multiplication given by  $(r, m)(r', m') = (rr', rm' + r'm)$ .

In the following result  $\text{Ann}_M(a)$ , where  $a \in R$ , denotes the set of all elements of  $M$  annihilated by  $a$ . Also we use  $\text{Ann}(M)$  to denote the annihilator of the  $R$ -module  $M$ .

# WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

## THEOREM

Let  $R$  be a commutative ring and let  $M$  be an  $R$ -module. Then

$\bar{\Gamma}(R \ltimes M) = \Gamma(R \ltimes M)$  if and only if the following conditions hold true:

- ①  $(2\text{Nil}(R))M = 0$ .
- ②  $\bar{\Gamma}(R) = \Gamma(R)$ .
- ③  $\bigcup_{a \in \Lambda} \text{Ann}(a) \subset \text{Ann}(M)$  where  $\Lambda = Z(R) \setminus \text{Nil}(R)$ .
- ④  $\text{Ann}_M(a^2) = \text{Ann}_M(a)$  for all  $a \in R \setminus \text{Nil}(R)$ .

# WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

## THEOREM

Let  $R$  be a commutative ring and let  $M$  be an  $R$ -module. Then

$\bar{\Gamma}(R \ltimes M) = \Gamma(R \ltimes M)$  if and only if the following conditions hold true:

- ①  $(2\text{Nil}(R))M = 0$ .
- ②  $\bar{\Gamma}(R) = \Gamma(R)$ .
- ③  $\bigcup_{a \in \Lambda} \text{Ann}(a) \subset \text{Ann}(M)$  where  $\Lambda = Z(R) \setminus \text{Nil}(R)$ .
- ④  $\text{Ann}_M(a^2) = \text{Ann}_M(a)$  for all  $a \in R \setminus \text{Nil}(R)$ .

# WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

## THEOREM

Let  $R$  be a commutative ring and let  $M$  be an  $R$ -module. Then

$\bar{\Gamma}(R \ltimes M) = \Gamma(R \ltimes M)$  if and only if the following conditions hold true:

- ①  $(2\text{Nil}(R))M = 0$ .
- ②  $\bar{\Gamma}(R) = \Gamma(R)$ .
- ③  $\bigcup_{a \in \Lambda} \text{Ann}(a) \subset \text{Ann}(M)$  where  $\Lambda = Z(R) \setminus \text{Nil}(R)$ .
- ④  $\text{Ann}_M(a^2) = \text{Ann}_M(a)$  for all  $a \in R \setminus \text{Nil}(R)$ .

# WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

## THEOREM

Let  $R$  be a commutative ring and let  $M$  be an  $R$ -module. Then

$\bar{\Gamma}(R \ltimes M) = \Gamma(R \ltimes M)$  if and only if the following conditions hold true:

- ①  $(2\text{Nil}(R))M = 0$ .
- ②  $\bar{\Gamma}(R) = \Gamma(R)$ .
- ③  $\bigcup_{a \in \Lambda} \text{Ann}(a) \subset \text{Ann}(M)$  where  $\Lambda = Z(R) \setminus \text{Nil}(R)$ .
- ④  $\text{Ann}_M(a^2) = \text{Ann}_M(a)$  for all  $a \in R \setminus \text{Nil}(R)$ .

# WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

## THEOREM

Let  $R$  be a commutative ring and let  $M$  be an  $R$ -module. Then

$\bar{\Gamma}(R \ltimes M) = \Gamma(R \ltimes M)$  if and only if the following conditions hold true:

- ①  $(2\text{Nil}(R))M = 0$ .
- ②  $\bar{\Gamma}(R) = \Gamma(R)$ .
- ③  $\bigcup_{a \in \Lambda} \text{Ann}(a) \subset \text{Ann}(M)$  where  $\Lambda = Z(R) \setminus \text{Nil}(R)$ .
- ④  $\text{Ann}_M(a^2) = \text{Ann}_M(a)$  for all  $a \in R \setminus \text{Nil}(R)$ .

## WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

### COROLLARY

Let  $R$  be a reduced ring and let  $M$  be an  $R$ -module. Then  $\bar{\Gamma}(R \ltimes M) = \Gamma(R \ltimes M)$  if and only if the following conditions hold true:

- 1  $\bar{\Gamma}(R) = \Gamma(R)$ .
- 2  $Z(R) \subseteq \text{Ann}(M)$ .
- 3  $\text{Ann}_M(a^2) = \text{Ann}_M(a)$  for all  $a \in R \setminus \{0\}$ .

## WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

### COROLLARY

Let  $R$  be a reduced ring and let  $M$  be an  $R$ -module. Then  $\bar{\Gamma}(R \ltimes M) = \Gamma(R \ltimes M)$  if and only if the following conditions hold true:

- 1  $\bar{\Gamma}(R) = \Gamma(R)$ .
- 2  $Z(R) \subseteq \text{Ann}(M)$ .
- 3  $\text{Ann}_M(a^2) = \text{Ann}_M(a)$  for all  $a \in R \setminus \{0\}$ .

## WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

### COROLLARY

Let  $R$  be a ring such that  $Z(R)$  is an ideal of  $R$  and let  $M$  be an  $R$ -module. Then  $\bar{\Gamma}(R \ltimes R/Z(R)) = \Gamma(R \ltimes R/Z(R))$  if and only if  $\bar{\Gamma}(R) = \Gamma(R)$ .

### COROLLARY

Let  $R$  be a ring. Then  $\bar{\Gamma}(R \ltimes R/\text{Nil}(R)) = \Gamma(R \ltimes R/\text{Nil}(R))$  if and only if the following conditions hold true:

- 1  $\bar{\Gamma}(R) = \Gamma(R)$ .
- 2  $\bigcup_{a \in \Lambda} \text{Ann}(a) \subset \text{Nil}(R)$  where  $\Lambda = Z(R) \setminus \text{Nil}(R)$ .

## WHEN $\overline{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

### COROLLARY

Let  $R$  be a ring such that  $Z(R)$  is an ideal of  $R$  and let  $M$  be an  $R$ -module. Then  $\overline{\Gamma}(R \ltimes R/Z(R)) = \Gamma(R \ltimes R/Z(R))$  if and only if  $\overline{\Gamma}(R) = \Gamma(R)$ .

### COROLLARY

Let  $R$  be a ring. Then  $\overline{\Gamma}(R \ltimes R/\text{Nil}(R)) = \Gamma(R \ltimes R/\text{Nil}(R))$  if and only if the following conditions hold true:

- 1  $\overline{\Gamma}(R) = \Gamma(R)$ .
- 2  $\bigcup_{a \in \Lambda} \text{Ann}(a) \subset \text{Nil}(R)$  where  $\Lambda = Z(R) \setminus \text{Nil}(R)$ .

## WHEN $\bar{\Gamma}(R)$ AND $\Gamma(R)$ COINCIDE?

### COROLLARY

Let  $R$  be a ring such that  $Z(R)$  is an ideal of  $R$  and let  $M$  be an  $R$ -module. Then  $\bar{\Gamma}(R \ltimes R/Z(R)) = \Gamma(R \ltimes R/Z(R))$  if and only if  $\bar{\Gamma}(R) = \Gamma(R)$ .

### COROLLARY

Let  $R$  be a ring. Then  $\bar{\Gamma}(R \ltimes R/\text{Nil}(R)) = \Gamma(R \ltimes R/\text{Nil}(R))$  if and only if the following conditions hold true:

- ①  $\bar{\Gamma}(R) = \Gamma(R)$ .
- ②  $\bigcup_{a \in \Lambda} \text{Ann}(a) \subset \text{Nil}(R)$  where  $\Lambda = Z(R) \setminus \text{Nil}(R)$ .

## DIAMETER OF EXTENDED GRAPHS OF RINGS

### THEOREM

*Let  $R$  be a ring. Then  $\overline{\Gamma}(R)$  is connected with  $\text{diam}(\overline{\Gamma}(R)) \leq 3$ .*

## DIAMETER OF EXTENDED GRAPHS OF RINGS

### THEOREM (1998, ANDERSON AND LIVINGSTON)

*Let  $R$  be a ring. Then, there is a vertex  $x$  of  $\Gamma(R)$  which is adjacent to every other vertex if and only if either  $R \cong \mathbb{Z}_2 \times D$ , where  $D$  is an integral domain, or  $Z(R) = \text{Ann}(x)$ .*

### THEOREM

*Let  $R$  be a ring. Then, there is a vertex  $x$  of  $\bar{\Gamma}(R)$  which is adjacent to every other vertex if and only if either  $R \cong \mathbb{Z}_2 \times D$ , where  $D$  is an integral domain, or  $Z(R) = \sqrt{\text{Ann}(x^{n_x-1})}$ .*

### THEOREM

*Let  $R$  be a ring. Then  $\bar{\Gamma}(R)$  is a complete graph if and only if either  $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2$  or  $Z(R) = \text{Nil}(R)$  and for all  $x, y \in Z(R)^*$   $x^{n_x-1}y^{n_y-1} = 0$ .*

## DIAMETER OF EXTENDED GRAPHS OF RINGS

### THEOREM (1998, ANDERSON AND LIVINGSTON)

*Let  $R$  be a ring. Then, there is a vertex  $x$  of  $\Gamma(R)$  which is adjacent to every other vertex if and only if either  $R \cong \mathbb{Z}_2 \times D$ , where  $D$  is an integral domain, or  $Z(R) = \text{Ann}(x)$ .*

### THEOREM

*Let  $R$  be a ring. Then, there is a vertex  $x$  of  $\bar{\Gamma}(R)$  which is adjacent to every other vertex if and only if either  $R \cong \mathbb{Z}_2 \times D$ , where  $D$  is an integral domain, or  $Z(R) = \sqrt{\text{Ann}(x^{n_x-1})}$ .*

### THEOREM

*Let  $R$  be a ring. Then  $\bar{\Gamma}(R)$  is a complete graph if and only if either  $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2$  or  $Z(R) = \text{Nil}(R)$  and for all  $x, y \in Z(R)^*$   $x^{n_x-1}y^{n_y-1} = 0$ .*

## DIAMETER OF EXTENDED GRAPHS OF RINGS

### THEOREM (1998, ANDERSON AND LIVINGSTON)

*Let  $R$  be a ring. Then, there is a vertex  $x$  of  $\Gamma(R)$  which is adjacent to every other vertex if and only if either  $R \cong \mathbb{Z}_2 \times D$ , where  $D$  is an integral domain, or  $Z(R) = \text{Ann}(x)$ .*

### THEOREM

*Let  $R$  be a ring. Then, there is a vertex  $x$  of  $\bar{\Gamma}(R)$  which is adjacent to every other vertex if and only if either  $R \cong \mathbb{Z}_2 \times D$ , where  $D$  is an integral domain, or  $Z(R) = \sqrt{\text{Ann}(x^{n_x-1})}$ .*

### THEOREM

*Let  $R$  be a ring. Then  $\bar{\Gamma}(R)$  is a complete graph if and only if either  $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2$  or  $Z(R) = \text{Nil}(R)$  and for all  $x, y \in Z(R)^*$   $x^{n_x-1}y^{n_y-1} = 0$ .*

## DIAMETER OF EXTENDED GRAPHS OF RINGS

### PROPOSITION

Let  $R = \prod_{i=1}^n R_i$  where  $(R_i)_{1 \leq i \leq n}$  is a finite family of rings with  $n \in \mathbb{N} \setminus \{0, 1\}$ .

① If  $n = 2$ , we have the following assertions:

- ①  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 1$  if and only if  $R_1 \cong R_2 \cong \mathbb{Z}_2$ .
- ② If  $R_1$  and  $R_2$  are integral with  $|R_1| \geq 3$  or  $|R_2| \geq 3$ , then  $\Gamma(R) = \bar{\Gamma}(R)$  and  $\text{diam}(\Gamma(R)) = 2$ . In this case  $\Gamma(R)$  is a complete bipartite graph.
- ③ If at least one of  $R_1$  and  $R_2$  contains a non-nilpotent zero divisor, then  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 3$ .
- ④ If at least one of  $R_1$  and  $R_2$  is not integral such that all zero divisors are nilpotent in each ring with non-zero zero divisors, then  $\text{diam}(\Gamma(R)) = 3$  and  $\text{diam}(\bar{\Gamma}(R)) = 2$ .
- ⑤ If  $n \geq 3$ ,  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 3$ .

## DIAMETER OF EXTENDED GRAPHS OF RINGS

### PROPOSITION

Let  $R = \prod_{i=1}^n R_i$  where  $(R_i)_{1 \leq i \leq n}$  is a finite family of rings with  $n \in \mathbb{N} \setminus \{0, 1\}$ .

① If  $n = 2$ , we have the following assertions:

- ①  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 1$  if and only if  $R_1 \cong R_2 \cong \mathbb{Z}_2$ .
- ② If  $R_1$  and  $R_2$  are integral with  $|R_1| \geq 3$  or  $|R_2| \geq 3$ , then  $\Gamma(R) = \bar{\Gamma}(R)$  and  $\text{diam}(\Gamma(R)) = 2$ . In this case  $\Gamma(R)$  is a complete bipartite graph.
- ③ If at least one of  $R_1$  and  $R_2$  contains a non-nilpotent zero divisor, then  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 3$ .
- ④ If at least one of  $R_1$  and  $R_2$  is not integral such that all zero divisors are nilpotent in each ring with non-zero zero divisors, then  $\text{diam}(\Gamma(R)) = 3$  and  $\text{diam}(\bar{\Gamma}(R)) = 2$ .

⑤ If  $n \geq 3$ ,  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 3$ .

## DIAMETER OF EXTENDED GRAPHS OF RINGS

### PROPOSITION

Let  $R = \prod_{i=1}^n R_i$  where  $(R_i)_{1 \leq i \leq n}$  is a finite family of rings with  $n \in \mathbb{N} \setminus \{0, 1\}$ .

① If  $n = 2$ , we have the following assertions:

- ①  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 1$  if and only if  $R_1 \cong R_2 \cong \mathbb{Z}_2$ .
- ② If  $R_1$  and  $R_2$  are integral with  $|R_1| \geq 3$  or  $|R_2| \geq 3$ , then  $\Gamma(R) = \bar{\Gamma}(R)$  and  $\text{diam}(\Gamma(R)) = 2$ . In this case  $\Gamma(R)$  is a complete bipartite graph.
- ③ If at least one of  $R_1$  and  $R_2$  contains a non-nilpotent zero divisor, then  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 3$ .
- ④ If at least one of  $R_1$  and  $R_2$  is not integral such that all zero divisors are nilpotent in each ring with non-zero zero divisors, then  $\text{diam}(\Gamma(R)) = 3$  and  $\text{diam}(\bar{\Gamma}(R)) = 2$ .

⑤ If  $n \geq 3$ ,  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 3$ .

## DIAMETER OF EXTENDED GRAPHS OF RINGS

### PROPOSITION

Let  $R = \prod_{i=1}^n R_i$  where  $(R_i)_{1 \leq i \leq n}$  is a finite family of rings with  $n \in \mathbb{N} \setminus \{0, 1\}$ .

① If  $n = 2$ , we have the following assertions:

- ①  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 1$  if and only if  $R_1 \cong R_2 \cong \mathbb{Z}_2$ .
- ② If  $R_1$  and  $R_2$  are integral with  $|R_1| \geq 3$  or  $|R_2| \geq 3$ , then  $\Gamma(R) = \bar{\Gamma}(R)$  and  $\text{diam}(\Gamma(R)) = 2$ . In this case  $\Gamma(R)$  is a complete bipartite graph.
- ③ If at least one of  $R_1$  and  $R_2$  contains a non-nilpotent zero divisor, then  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 3$ .
- ④ If at least one of  $R_1$  and  $R_2$  is not integral such that all zero divisors are nilpotent in each ring with non-zero zero divisors, then  $\text{diam}(\Gamma(R)) = 3$  and  $\text{diam}(\bar{\Gamma}(R)) = 2$ .

② If  $n \geq 3$ ,  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 3$ .

## DIAMETER OF EXTENDED GRAPHS OF RINGS

### PROPOSITION

Let  $R = \prod_{i=1}^n R_i$  where  $(R_i)_{1 \leq i \leq n}$  is a finite family of rings with  $n \in \mathbb{N} \setminus \{0, 1\}$ .

① If  $n = 2$ , we have the following assertions:

- ①  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 1$  if and only if  $R_1 \cong R_2 \cong \mathbb{Z}_2$ .
- ② If  $R_1$  and  $R_2$  are integral with  $|R_1| \geq 3$  or  $|R_2| \geq 3$ , then  $\Gamma(R) = \bar{\Gamma}(R)$  and  $\text{diam}(\Gamma(R)) = 2$ . In this case  $\Gamma(R)$  is a complete bipartite graph.
- ③ If at least one of  $R_1$  and  $R_2$  contains a non-nilpotent zero divisor, then  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 3$ .
- ④ If at least one of  $R_1$  and  $R_2$  is not integral such that all zero divisors are nilpotent in each ring with non-zero zero divisors, then  $\text{diam}(\Gamma(R)) = 3$  and  $\text{diam}(\bar{\Gamma}(R)) = 2$ .

② If  $n \geq 3$ ,  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 3$ .

## DIAMETER OF EXTENDED GRAPHS OF RINGS

### PROPOSITION

Let  $R = \prod_{i=1}^n R_i$  where  $(R_i)_{1 \leq i \leq n}$  is a finite family of rings with  $n \in \mathbb{N} \setminus \{0, 1\}$ .

① If  $n = 2$ , we have the following assertions:

- ①  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 1$  if and only if  $R_1 \cong R_2 \cong \mathbb{Z}_2$ .
- ② If  $R_1$  and  $R_2$  are integral with  $|R_1| \geq 3$  or  $|R_2| \geq 3$ , then  $\Gamma(R) = \bar{\Gamma}(R)$  and  $\text{diam}(\Gamma(R)) = 2$ . In this case  $\Gamma(R)$  is a complete bipartite graph.
- ③ If at least one of  $R_1$  and  $R_2$  contains a non-nilpotent zero divisor, then  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 3$ .
- ④ If at least one of  $R_1$  and  $R_2$  is not integral such that all zero divisors are nilpotent in each ring with non-zero zero divisors, then  $\text{diam}(\Gamma(R)) = 3$  and  $\text{diam}(\bar{\Gamma}(R)) = 2$ .

② If  $n \geq 3$ ,  $\text{diam}(\Gamma(R)) = \text{diam}(\bar{\Gamma}(R)) = 3$ .

## CYCLES IN EXTENDED GRAPHS OF RINGS

### THEOREM

*Let  $R$  be a ring. If  $\overline{\Gamma}(R) \neq \Gamma(R)$ , then  $\overline{\Gamma}(R)$  contains a cycle.*

## CYCLES IN EXTENDED GRAPHS OF RINGS

### COROLLARY

*If  $R$  contains a nilpotent element of index greater than or equal to three, then  $gr(\overline{\Gamma}(R)) = 3$ .*

# Thank you