

# Systems of sets of lengths

W.A. Schmid<sup>1</sup>

LAGA, Université Paris 8, France

September 2014 / Graz

---

<sup>1</sup>Supported by the ANR project CAESAR

## Sets of lengths

A monoid  $H$  (commutative, cancellative), for example the multiplicative monoid of a domain, is called

1. *atomic* if each non-zero element  $a$  is the product (of finitely many) irreducible elements.
2. *factorial* if there is an essentially unique factorization into irreducibles (i.e., up to ordering and associates).

If the structure is not factorial, one still wants to “understand” the arithmetic.

## Sets of lengths, II

For example, study *sets of lengths*.

If

$$a = a_1 \dots a_n$$

with irred.  $a_i$ , then  $n$  is called a length of  $a$ .

$$L(a) = \{n: n \text{ is a length}\}.$$

For  $a$  invertible set  $L(a) = \{0\}$ .

The *system of sets of lengths* is

$$\mathcal{L}(H) = \{L(a): a \in H\}.$$

## Sets of lengths, III

In general, sets of lengths can be infinite.

Yet, for Krull monoids, Dedekind domains, numerical monoids, ... they are *finite*.

The property is called BF (bounded factorization). We only discuss BF.

*Note:* Each set of lengths is finite, but still in general there are infinitely many sets,

So

$$\mathcal{L}(H) \subset \mathbb{P}_{\text{fin}}(\mathbb{N}_0).$$

# General properties of systems of sets of lengths (of BF)

We have

$$\mathcal{L}(H) \subset \mathbb{P}_{\text{fin}}(\mathbb{N}_0).$$

What else?

Let  $L, L' \in \mathcal{L}(H)$ .

- ▶ If  $0 \in L$ , then  $L = \{0\}$ .
- ▶ If  $1 \in L$ , then  $L = \{1\}$ .
- ▶ Let  $S = L + L' = \{I + I' : I \in L, I' \in L'\}$ . There exists some  $L'' \in \mathcal{L}(H)$  such that  $S \subset L''$ .

We have  $\mathsf{L}(a) + \mathsf{L}(b) \subset \mathsf{L}(ab)$ .

## General properties of systems of sets of lengths, II

Direct consequences:

- ▶  $\{\{0\}\} \subset \mathcal{L}(H)$  and equality holds if and only if  $H$  is a group.
- ▶ If  $H$  is not a group, then  $|\mathcal{L}(H)|$  infinite.
- ▶ If  $\mathcal{L}(H)$  contains some  $L$  with  $|L| \geq 2$ , then  $\mathcal{L}(H)$  contains arbitrarily large sets.

Moreover

$$\mathcal{L}(H) \subset \{\{0\}, \{1\}\} \cup \mathbb{P}_{\text{fin}}(\mathbb{N}_{\geq 2}).$$

## Dichotomy (for BF-structures)

- ▶ Either  $|\mathcal{L}(a)| = 1$  for each  $a$ ,
- ▶ or for each  $n$  there exists a  $a_n$  such that  $|\mathcal{L}(a_n)| \geq n$ .

If the former (and  $H$  not a group), then

$$\mathcal{L}(H) = \{\{n\} : n \in \mathbb{N}_0\}.$$

(Consider  $a^n$  for  $n$  irreducible.)

Such an  $H$  is called *half-factorial*.

## Interlude: Why *half*-factorial?

Factorial: if  $u_1 \dots u_n = v_1 \dots v_m$ , then

- ▶  $n = m$ ,
- ▶ and there exist a permutation  $\pi$  such that  $u_i$  and  $v_{\pi(i)}$  are associates.

For *half*-factorial, we only have the first 'half' of the definition.

What if I want the other half?

So, if  $u_1 \dots u_n = v_1 \dots v_n$ , then there exist a permutation  $\pi$  such that  $u_i$  and  $v_{\pi(i)}$ ?

Coykendall and Smith: For domains (yet not monoids) other half-factorial implies factorial.

## Interlude II: Which structures are half-factorial?

Theorem (Carlitz, 1960)

*The ring of algebraic integers of a number field is half-factorial if and only if the class group has at most two elements.*

However, already eg, for non-maximal orders and for Krull monoids/Dedekind domains the problem to characterize half-factoriality is subtle.

## Interlude II: Which structures are half-factorial?

Theorem (Skula/Śliwa/Zaks 1976)

*A Krull monoid with prime cyclic class group is half factorial if and only if only one non-zero class contains prime divisors.*

Analogue known for cyclic groups of prime power order, but already for general cyclic groups the problem is open and ‘non-uniform.’

Note: Krull monoids with arbitrarily large class group can be half-factorial.

Question: Can every abelian group be the class group of a half-factorial monoid?

Partial results due to Geroldinger–Göbel.

## Interlude II: Which structures are half-factorial?

### Theorem (Halter-Koch, 1981)

Let  $K$  be a quadratic number field,  $\mathcal{O}_K$  its maximal order and  $\mathcal{O}_{K,f}$  the unique order of index  $f \geq 2$ . The following statements are equivalent.

- ▶  $\mathcal{O}_{K,f}$  is half-factorial.
- ▶  $\mathcal{O}_K$  is half-factorial,  $\mathcal{O}_K = \mathcal{O}_K^\times \mathcal{O}_{K,f}$  and  $f$  is prime or twice an odd prime.

Various further investigations on the general problem.

# How do (non-trivial) systems of sets look like?

We focus on Krull monoids where each class contains a prime divisor.

- ▶ Start by recalling some “complete” results.
- ▶ Brief discussion of the general framework to study such problems.
- ▶ Results on the general case.

## Small class group (Geroldinger 1990)

Let  $H$  be a Krull monoid with class group  $G$  such that each class contains a prime divisor.

If  $G = C_3$  then

$$\mathcal{L}(H) = \{y + 2k + [0, k] : y, k \in \mathbb{N}_0\}$$

If  $G = C_2 \oplus C_2$  then

$$\mathcal{L}(H) = \{y + 2k + [0, k] : y, k \in \mathbb{N}_0\}$$

If  $G = C_4$  then

$$\begin{aligned}\mathcal{L}(H) = & \{y + 2k + 2 \cdot [0, k] : y, k \in \mathbb{N}_0\} \cup \\ & \{y + k + 1 + [0, k] : y, k \in \mathbb{N}_0\}\end{aligned}$$

If  $G = C_2^3$  then

$$\begin{aligned}\mathcal{L}(H) = & \{y + k + 1 + [0, k] : y \in \mathbb{N}_0, k = 0, 1, 2\} \cup \\ & \{y + k + [0, k] : y \in \mathbb{N}_0, k \geq 3\} \cup \\ & \{y + 2k + 2 \cdot [0, k] : y, k \in \mathbb{N}_0\}\end{aligned}$$

## Infinite class group (Kainrath, 1999)

Let  $H$  be a Krull monoid with class group  $G$  such that each class contains a prime divisor.

If  $G$  is infinite then

$$\mathcal{L}(H) = \{\{0\}, \{1\}\} \cup \mathbb{P}_{\text{fin}}(\mathbb{N}_{\geq 2}).$$

In other words  $\mathcal{L}(H)$  is as large as possible. Or:  
“Every” set is a set of lengths.

## Transfer to block monoids

These (and many other) results are proved via “transferring” the arithmetic problem to an auxiliary monoid and then studying the question there.

For a Krull monoid there is a transfer homomorphism to the block monoid over the sets of ideal classes containing prime divisors. A transfer homomorphism preserves sets of lengths.

Note: There are also other (non-commutative) structures that admit a transfer to these block monoids. (Smertnig, 2013)

## Reminder “Krull monoid”

A (comm.) monoid is called a Krull monoid if there exists a free monoid  $\mathcal{F}(P)$  and a divisor homomorphism

$$\phi : H \rightarrow \mathcal{F}(P),$$

i.e.,  $\phi$  is a monoid homomorphism such that

$$a | b \iff \phi(a) | \phi(b).$$

$\phi$  is called a divisor theory if  $\mathcal{F}(P)$  is “minimal.”

( $f = \gcd(\phi(a_1), \dots, \phi(a_r))$  for each  $f \in \mathcal{F}(P)$ )

For  $\phi$  a divisor theory of  $H$  (unique up to iso.),

$$\mathcal{C}(H) = \mathbf{q}(\mathcal{F}(P)) / \mathbf{q}(\text{im } \phi)$$

is called the class group and

$$G_0 = \{g \in \mathcal{C}(H) : g \cap P \neq \emptyset\}$$

the subset of classes containing primes.

## Reminder “Krull monoid”, II

In fact, one can choose  $P$  to equal

$$\mathfrak{X}(H) = v - \max(H) = v - \operatorname{spec}(H) \setminus \{\emptyset\}.$$

i.e., a divisor theory is given by

$$H \rightarrow \mathcal{H}(H) \hookrightarrow \mathcal{I}_v^*(H) = \mathcal{F}(\mathfrak{X}(H))$$

( $\mathcal{I}_v^*(H)$  monoid of  $v$ -invertible  $v$ -ideals)

Alternatively,  $H$  is Krull if it is Mori ( $v$ -noetherian) and completely integrally closed; ...

A domain  $R$  is a Krull domain if and only if  $(R \setminus \{0\}, \cdot)$  is a Krull monoid. (Krause, 89)

## Block monoid $\mathcal{B}(G_0)$

Let  $(G, +, 0)$  be an abelian group.

Let  $G_0 \subset G$ . A *sequence*  $S$  over  $G_0$  is an element of  $\mathcal{F}(G_0)$  the free abelian monoid with basis  $G_0$ .

Thus a sequences is a (formal, commutative) product

$$S = \prod_{i=1}^l g_i = \prod_{g \in G_0} g^{v_g(S)}.$$

The sequence  $S$  is called a *zero-sum sequence* if its *sum*

$$\sigma(S) = \sum_{i=1}^l g_i = \sum_{g \in G_0} v_g(S)g \in G$$

equals 0.

The *block monoid* over  $G_0$  is defined as

$$\mathcal{B}(G_0) = \{S \in \mathcal{F}(G_0) : \sigma(S) = 0\}.$$

## Sets of lengths via block monoids

For a Krull monoid  $H$  sets of lengths just depend on the class group  $\mathcal{C}(H) = G$  and the set  $G_0$  of classes containing primes (the distribution of prime  $v$ -ideals).

More precisely, there exists a monoid epimorphism (the block homomorphism)

$$\beta : H \rightarrow \mathcal{B}(G_0)$$

such that

$$\mathsf{L}_H(a) = \mathsf{L}_{\mathcal{B}(G_0)}(\beta(a))$$

for each  $a \in H$ .

More specifically,  $\beta(a) = [p_1] \dots [p_k]$  where  $\phi(a) = p_1 \dots p_k$  (essentially unique!).

## Let us construct some sets of lengths!

Let  $G$  be some group. What type of sets of lengths can we construct (easily)?

- ▶ Arithmetic progressions.
- ▶ Almost arithmetic progressions.
- ▶ Arithmetic multiprogressions.

(Note the above examples are all multidimensional AP, but this could be avoided.)

# Almost arithmetical multiprogression

We say,  $L$  is an AAMP if

$$L = y + (L' \cup L^* \cup L'') \subset y + \mathcal{D} + d\mathbb{Z}$$

with

- ▶  $\{0, d\} \subset \mathcal{D} \subset [0, d]$  (period)
- ▶  $L^* = [0, l'] \cap (\mathcal{D} + d\mathbb{Z})$  (central part)
- ▶  $L' \subset [-M, -1]$  and  $L'' \subset [l' + 1, l' + M]$  (initial and end part)

# Structure Theorem of Lengths

Geroldinger (1988) showed, later various generalizations and refinements by Freiman, Geroldinger, Grynkiewicz, Halter-Koch, . . .

## Theorem

*Let  $H$  be a Krull monoid where only finitely many classes contain prime divisors. Then there exists a finite set  $\Delta^*$  and some  $M$  such that for each  $a \in H$  the set  $L(a)$  is an AAMP with difference  $d \in \Delta^*$  and bound  $m$ .*

Is this the right way to describe sets of lengths?

Several reasons to believe it.

## A sort of converse to STSL (S. 2009)

Let  $M \in \mathbb{N}_0$  and  $\emptyset \neq \Delta^* \subset \mathbb{N}$  finite. Exists a finite abelian group  $G$  s.t.:

for every AAMP  $L$  with difference  $d \in \Delta^*$  and bound  $M$  there is some  $y_{G,L}$  such that

$$y + L \in \mathcal{L}(G) \text{ for all } y \geq y_{G,L}.$$

## Explicit version

$M \in \mathbb{N}$  and  $\emptyset \neq \Delta^* \subset \mathbb{N}$ ,  $D = \max \Delta^*$ . Let  $G$  be a finite abelian group.  $\mathcal{L}(G)$  contains (up to shift) each AAMP with difference  $d \in \Delta^*$  and bound  $M$  if

- ▶  $G$  has a subgroup of the form

$$\left( \bigoplus_{j=1}^r \langle e_j \rangle \right) \oplus \langle f \rangle \oplus \bigoplus_{d \in \Delta^*} \left( \bigoplus_{i=0}^{\lceil (M+d-1)/d \rceil} \langle e_i^d \rangle \right),$$

where  $r \geq 12(M^2 + D)$ ,  $\text{ord } e_j \geq 5$ ,  $\text{ord } f \geq 24(M^2 + D)$  and  $\text{ord } e_i^d = d(\lceil (M+d-1)/d \rceil + i) + 2$ , or

- ▶ for some prime  $p \geq 5$  the  $p$ -rank of  $G$  is at least  $21(M^2 + D)$ .

# When are AAMPs not necessary?

(Geroldinger 1990; 2014)

## Theorem

*The following statements are equivalent*

- (a) *All sets of lengths in  $\mathcal{L}(G)$  are arithmetical progressions.*
- (b)  $G \in \{C_1, C_2, C_2^2, C_2^3, C_3, C_3^2, C_4\}$

## Theorem

*The following statements are equivalent:*

- (a) *There is a constant  $M \in \mathbb{N}$  such that all sets of lengths in  $\mathcal{L}(G)$  are AAPs with bound  $M$ .*
- (b)  $G$  *is a subgroup of  $C_4^3$  or a subgroup of  $C_3^3$ .*

# When are AAMPs not necessary?, II

## Theorem

*The following statements are equivalent:*

- (a) *All sets of lengths in  $\mathcal{L}(G)$  are AMPs with difference in  $\Delta^*(G)$ .*
- (b)  *$G$  is cyclic of order  $|G| \leq 5$  or a subgroup of  $\{C_3 \oplus C_3, C_2 \oplus C_2 \oplus C_2\}$ .*

# Which differences do appear?

It is known that the STSL holds for

$$\Delta^*(H)$$

the set of minimal distances of all divisor-closed submonoids of  $H$ ; and that is the 'right' set to use.

## Minimal distance

Let  $L = \{\ell_1 < \ell_2 < \dots < \ell_r\}$ , then

$$\Delta(L) = \{\ell_2 - \ell_1, \ell_3 - \ell_2, \dots, \ell_r - \ell_{r-1}\}.$$

For  $H$  BF-monoid, let

$$\Delta(H) = \bigcup_{a \in H} \Delta(L(a))$$

the set distances of  $H$ . And,

$$\min \Delta(H)$$

the minimal distance of  $H$ .

Goal: Describe this set  $\Delta^*(H)$  explicitly as good as possible!

# Transfer

By standard transfer results, we actually are faced with following problem:

Let  $(G, +)$  be a finite abelian group (the class group). For a subset  $G_0 \subset G$  study

$$\min \Delta(\mathcal{B}(G_0));$$

where  $\mathcal{B}(G_0)$  is the monoid of zero-sum sequences over  $G_0$ .  
Set

$$\Delta^*(G) = \{\min \Delta(\mathcal{B}(G_0)) : G_0 \subset G\}.$$

(Note: If each class contains a prime divisor  $\Delta^*(H) = \Delta^*(G)$ .  
else  $\Delta^*(D) \subset \Delta^*(G)$ .)

## Some elements in $\Delta^*(G)$

- ▶ Let  $3 \leq d \mid \exp(G)$ , then  $d - 2 \in \Delta^*(G)$ .
- ▶ Let  $r \leq r(G)$ , then  $r - 1 \in \Delta^*(G)$ .

Also,  $1 \in \Delta^*(G)$ .

In particular,  $\min \Delta^*(G) = 1$  and

$$\max \Delta^*(G) \geq \max\{\exp(G) - 2, r(G) - 1\}.$$

# What about $\max \Delta^*(G)$ ?

Geroldinger–Zhong 2014

$$\max \Delta^*(G) = \max\{\exp(G) - 2, r(G) - 1\}.$$