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Sets of lengths

A monoid H (commutative, cancellative), for example the
multiplicative monoid of a domain, is called

1. atomic if each non-zero element a is the product (of finitely
many) irreducible elements.

2. factorial if there is an essentially unique factorization into
irreducibles (i.e., up to ordering and associates).

If the structure is not factorial, one still wants to “understand”
the arithmetic.



Sets of lengths, II

For example, study sets of lengths.

If
a = a1 . . . an

with irred. ai , then n is called a length of a.

L(a) = {n : n is a length }.

For a invertible set L(a) = {0}.
The system of sets of lengths is

L(H) = {L(a) : a ∈ H}.



Sets of lengths, III

In general, sets of lengths can be infinite.
Yet, for Krull monoids, Dedekind domains, numerical monoids,
... they are finite.
The property is called BF (bounded factorization). We only
discuss BF.
Note: Each set of lengths is finite, but still in general there are
infinitely many sets,
So

L(H) ⊂ Pfin(N0).



General properties of systems of sets of lengths (of
BF)

We have
L(H) ⊂ Pfin(N0).

What else?
Let L,L′ ∈ L(H).

I If 0 ∈ L, then L = {0}.
I If 1 ∈ L, then L = {1}.
I Let S = L + L′ = {l + l ′ : l ∈ L, l ′ ∈ L′}. There exists some

L′′ ∈ L(H) such that S ⊂ L′′.
We have L(a) + L(b) ⊂ L(ab).



General properties of systems of sets of lengths, II

Direct consequences:
I {{0}} ⊂ L(H) and equality holds if and only if H is a group.
I If H is not a group, then |L(H)| infinite.
I If L(H) contains some L with |L| ≥ 2, then L(H) contains

arbitrarily large sets.
Moreover

L(H) ⊂ {{0}, {1}} ∪ Pfin(N≥2).



Dichotomy (for BF-structures)

I Either |L(a)| = 1 for each a,
I or for each n there exists a an such that |L(an)| ≥ n.

If the former (and H not a group), then

L(H) = {{n} : n ∈ N0}.

(Consider an for n irreducible.)
Such an H is called half-factorial.



Interlude: Why half-factorial?

Factorial: if u1 . . . un = v1 . . . vm, then
I n = m,
I and there exist a permutation π such that ui and vπ(i) are

associates.
For half-factorial, we only have the first ’half’ of the definition.
What if I want the other half?
So, if if u1 . . . un = v1 . . . vn, then there exist a permutation π
such that ui and vπ(i)?
Coykendall and Smith: For domains (yet not monoids) other
half-factorial implies factorial.



Interlude II: Which structures are half-factorial?

Theorem (Carlitz, 1960)

The ring of algebraic integers of a number field is half-factorial if
and only if the class group has at most two elements.

However, already eg, for non-maximal orders and for Krull
monoids/Dedekind domains the problem to characterize
half-factoriality is subtle.



Interlude II: Which structures are half-factorial?

Theorem (Skula/Śliwa/Zaks 1976)

A Krull monoid with prime cyclic class group is half factorial if
an only if only one non-zero class contains prime divisors.

Analogue known for cyclic groups of prime power order, but
already for general cyclic groups the problem is open and
‘non-uniform.’
Note: Krull monoids with arbitrarily large class group can be
half-factorial.
Question: Can every abelian group be the class group of a
half-factorial monoid?
Partial results due to Geroldinger–Göbel.



Interlude II: Which structures are half-factorial?

Theorem (Halter-Koch, 1981)

Let K be a quadratic number field, OK its maximal order and
OK ,f the unique order of index f ≥ 2. The following statements
are equivalent.

I OK ,f is half-factorial.
I OK is half-factorial, OK = O×KOK ,f and f is prime or twice

an odd prime.

Various further investigations on the general problem.



How do (non-trivial) systems of sets look like?

We focus on Krull monoids where each class contains a prime
divisor.

I Start by recalling some “complete” results.
I Brief discussion of the general framework to study such

problems.
I Results on the general case.



Small class group (Geroldinger 1990)

Let H be a Krull monoid with class group G such that each
class contains a prime divisor.
If G = C3 then

L(H) = {y + 2k + [0, k ] : y , k ∈ N0}

If G = C2 ⊕ C2 then

L(H) = {y + 2k + [0, k ] : y , k ∈ N0}

If G = C4 then

L(H) ={y + 2k + 2 · [0, k ] : y , k ∈ N0}∪
{y + k + 1 + [0, k ] : y , k ∈ N0}

If G = C3
2 then

L(H) ={y + k + 1 + [0, k ] : y ∈ N0, k = 0,1,2}∪
{y + k + [0, k ] : y ∈ N0, k ≥ 3}∪
{y + 2k + 2 · [0, k ] : y , k ∈ N0}



Infinite class group (Kainrath, 1999)

Let H be a Krull monoid with class group G such that each
class contains a prime divisor.
If G is infnite then

L(H) = {{0}, {1}} ∪ Pfin(N≥2).

In other words L(H) is as large as possible. Or:
“Every” set is is a set of lengths.



Transfer to block monoids

These (and many other) results are proved via “transferring” the
arithemtic problem to an auxilliary monoid and then studying
the question there.
For a Krull monoid there is a transfer homorphism to the block
monoid over the sets of ideal classes containing prime divisors.
A transfer homomorphism preserves sets of lengths.
Note: There are also other (non-commutative) structures that
admit a tranfer to these block monoids. (Smertnig, 2013)



Reminder “Krull monoid”

A (comm.) monoid is called a Krull monoid if there exists a free
monoid F(P) and a divisor homomorphism

φ : H → F(P),

i.e., φ is a monoid homomorphism such that

a | b ⇐⇒ φ(a) | φ(b).

φ is called a divisor theory if F(P) is “minimal.”
(f = gcd(φ(a1), . . . , φ(ar )) for each f ∈ F(P))
For φ a divisor theory of H (unique up to iso.),

C(H) = q(F(P))/q(imφ)

is called the class group and

G0 = {g ∈ C(H) : g ∩ P 6= ∅}

the subset of classes containing primes.



Reminder “Krull monoid”, II

In fact, one can choose P to equal

X(H) = v −max(H) = v − spec(H) \ {∅}.

I.e., a divisor theory is given by

H → H(H) ↪→ I∗v (H) = F(X(H))

(I∗v (H) monoid of v -invertible v -ideals)
Alternatively, H is Krull if it is Mori (v -noetherian) and
completely integrally closed; ...
A domain R is a Krull domain if and only if (R \ {0}, ·) is a Krull
monoid. (Krause, 89)



Block monoid B(G0)

Let (G,+,0) be an abelian group.
Let G0 ⊂ G. A sequence S over G0 is an element of F(G0) the
free abelian monoid with basis G0.
Thus a sequences is a (formal, commutative) product

S =
l∏

i=1

gi =
∏

g∈G0

gvg(S).

The sequence S is called a zero-sum sequence if its sum

σ(S) =
l∑

i=1

gi =
∑

g∈G0

vg(S)g ∈ G

equals 0.
The block monoid over G0 is defined as

B(G0) = {S ∈ F(G0) : σ(S) = 0}.



Sets of lengths via block monoids

For a Krull monoid H sets of lengths just depend on the class
group C(H) = G and the set G0 of classes containing primes
(the distribution of prime v -ideals).
More precisely, there exists a monoid epimorphism (the block
homomorphism)

β : H → B(G0)

such that
LH(a) = LB(G0)(β(a))

for each a ∈ H.
More specifically, β(a) = [p1] . . . [pk ] where φ(a) = p1 . . . pk
(essentially unique!).



Let us construct some sets of lengths!

Let G be some group. What type of sets of lengths can we
construct (easily)?

I Arithmetic progressions.
I Almost arithmetic progressions.
I Arithmetic multiprogressions.

(Note the above examples are all multidemsional AP, but this
could be avoided.)



Almost arithmetical multiprogression

We say, L is an AAMP if

L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y +D + dZ

with
I {0,d} ⊂ D ⊂ [0,d ] (period)
I L∗ = [0, l ′] ∩ (D + dZ) (central part)
I L′ ⊂ [−M,−1] and L′′ ⊂ [l ′ + 1, l ′ + M] (initial and end part)



Structure Theorem of Lengths

Geroldinger (1988) showed, later various generalizations and
refinements by Freiman, Gerlodinger, Grynkiewicz,
Halter-Koch, . . .

Theorem
Let H be a Krull monoid where only finitely many classes
contain prime divisors. Then there exists a finite set ∆∗ and
some M such that for each a ∈ H the set L(a) is an AAMP with
difference d ∈ ∆∗ and bound m.

Is this the right way to describe sets of lengths?
Several reasons to believe it.



A sort of converse to STSL (S. 2009)

Let M ∈ N0 and ∅ 6= ∆∗ ⊂ N finite. Exists a finite abelian group
G s.t.:
for every AAMP L with difference d ∈ ∆∗ and bound M there is
some yG,L such that

y + L ∈ L(G) for all y ≥ yG,L.



Explicit version

M ∈ N and ∅ 6= ∆∗ ⊂ N, D = max ∆∗. Let G be a finite abelian
group. L(G) contains (up to shift) each AAMP with difference
d ∈ ∆∗ and bound M if

I G has a subgroup of the form

( r⊕
j=1

〈ej〉
)
⊕ 〈f 〉 ⊕

⊕
d∈∆∗

(
⊕d(M+d−1)/de

i=0 〈ed
i 〉
)
,

where r ≥ 12(M2 + D), ord ej ≥ 5, ord f ≥ 24(M2 + D) and
ord ed

i = d(d(M + d − 1)/de+ i) + 2, or
I for some prime p ≥ 5 the p-rank of G is at least

21(M2 + D).



When are AAMPs not necessary?

(Geroldinger 1990; 2014)

Theorem
The following statements are equivalent
(a) All sets of lengths in L(G) are arithmetical progressions.
(b) G ∈ {C1,C2,C2

2 ,C
3
2 ,C3,C2

3 ,C4}

Theorem
The following statements are equivalent:
(a) There is a constant M ∈ N such that all sets of lengths in
L(G) are AAPs with bound M.

(b) G is a subgroup of C3
4 or a subgroup of C3

3 .



When are AAMPs not necessary?, II

Theorem
The following statements are equivalent:
(a) All sets of lengths in L(G) are AMPs with difference in

∆∗(G).
(b) G is cyclic of order |G| ≤ 5 or a subgroup of
{C3 ⊕ C3,C2 ⊕ C2 ⊕ C2}.



Which differences do appear?

It is known that the STSL holds for

∆∗(H)

the set of minimal distances of all divisor-closed submonoids of
H; and that is the ‘right’ set to use.
Minimal distance
Let L = {`1 < `2 < · · · < `r}, then

∆(L) = {`2 − `1, `3 − `2, . . . , `r − `r−1}.

For H BF-monoid, let

∆(H) =
⋃
a∈H

∆(L(a))

the set distances of H. And,

min ∆(H)

the minimal distance of H.
Goal: Describe this set ∆∗(H) explicitly as good as possible!



Transfer

By standard transfer results, we actually are faced with
following problem:
Let (G,+) be a finite abelian group (the class group). For a
subset G0 ⊂ G study

min ∆(B(G0));

where B(G0) is the monoid of zero-sum sequences over G0.
Set

∆∗(G) = {min ∆(B(G0)) : G0 ⊂ G}.

(Note: If each class contains a prime divisor ∆∗(H) = ∆∗(G).
else ∆∗(D) ⊂ ∆∗(G).)



Some elements in ∆∗(G)

I Let 3 ≤ d | exp(G), then d − 2 ∈ ∆∗(G).
I Let r ≤ r(G), then r − 1 ∈ ∆∗(G).

Also, 1 ∈ ∆∗(G).
In particular, min ∆∗(G) = 1 and

max ∆∗(G) ≥ max{exp(G)− 2, r(G)− 1}.



What about max ∆∗(G)?

Geroldinger–Zhong 2014

max ∆∗(G) = max{exp(G)− 2, r(G)− 1}.


