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ii) commutative semigroup algebras
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i) structural necessary/sufficient conditions
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4. Algebras with homogeneous relations
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6. Maximal orders
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Notation

K will denote a field

S - a semigroup (in most cases a monoid)

K [S ] - the corresponding semigroup algebra

if S has a zero element θ then K0[S ] = K [S ]/Kθ is called the
contracted semigroup algebra
(in other words: identify the zero of S with the zero of the algebra)
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Two motivating classical results

Theorem (folklore)

Let G be a polycyclic-by-finite group. Then K [G ] is Noetherian.

Idea of the proof (easy): induction on the length of a subnormal
chain of G with finite and cyclic factors. Let H ⊆ F be consecutive
factors of such a chain. Assume that K [H] is Noetherian.
- If [F : H] <∞, then we have a finite module extension
K [H] ⊆ K [F ]. So K [F ] is Noetherian.
- If F/H is infinite cyclic, then an argument similar to that in the
proof of Hilbert basis theorem is used to show that K [F ] is also
Noetherian.

Note: it is not known whether there are another classes of
examples of Noetherian group algebras!
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Theorem (Budach, 1964)

Assume that S is a commutative monoid. If K [S ] is Noetherian
then S is finitely generated.

The proof is based on a decomposition theory for congruences of a
commutative monoid with acc on congruences, on properties of
irreducible congruences and of cancellative congruences,
see R.Gilmer, Commutative Semigroup Rings.
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Finitely generated algebras

Theorem (JO)

Assume K [S ] is right Noetherian. Then S is finitely generated in
each of the following cases:

1 S satisfies acc on left ideals (this holds in particular if K [S ] is
also left Noetherian),

2 K [S ] satisfies a polynomial identity,

3 the Gelfand-Kirillov dimension of K [S ] is finite.

Problem: Is the assertion true for arbitrary right Noetherian K [S ]?

This is not known even in the case where S is cancellative (so it has
a group of (classical) quotients, because of the acc on right ideals).
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Idea of the proof:

Consider the image S of S under the natural map
K [S ] −→ K [S ]/B(K [S ]), where B(K [S ]) denotes the prime radical
of K [S ]. Then:

i) show that S is finitely generated by exploiting the structure of S
as a subsemigroup of the matrix algebra Mn(D) over a division
algebra D,

ii) lift this condition to S by using acc on right ideals in S (not
difficult).
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Structural approach

Let X ,Y be arbitrary nonempty sets and let P be a Y × X -matrix
with entries in G 0 = G ∪ {0}. Assume that P has no nonzero rows
or columns. Let M(G ,X ,Y ,P) be the set of all X × Y -matrices
with at most one nonzero entry in G . Such a nonzero matrix can
be denoted by (g , x , y) (with g in position (x , y)). Multiplication
is defined as follows:

g ◦ h = gPy .

Then M(G ,X ,Y ,P) is called a completely 0-simple semigroup
over a group G with sandwich matrix P.

A subsemigroup S of M(G ,X ,Y ,P) such that S intersects
nontrivially every set Mxy = {(g , x , y) | g ∈ G} is called a uniform
semigroup.
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A special case is when X = Y and P = ∆, the identity matrix.
If |X | = r then we write M(G , r , r ,∆).

Note that the contracted semigroup algebra K0[M(G , r , r ,∆)] is
isomorphic to the matrix algebra Mr (K [G ]). A uniform
subsemigroup S of M(G , r , r ,∆) is called a semigroup of
generalized matrix type.
So K0[S ] ⊆ Mr (K [G ]).
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Let S ⊆ M(G ,X ,Y ,P) be a uniform semigroup.
One can show that there exists a unique subgroup H of G , and a
sandwich matrix Q over H, such that one can consider
M(H,X ,Y ,Q) as a ”semigroup of quotients of S”. If one prefers,
one can consider S as an ”order” in M(H,X ,Y ,P).

Note that M(G ,X ,Y ,P) plays in semigroup theory the role played
in ring theory by a simple artinian ring.

Now, if S is a subsemigroup of the multiplicative monoid Mn(F ) of
all n × n-matrices over a field F , then S has an ideal chain
I1 ⊆ I2 ⊆ · · · ⊆ Ik = S with I1 and every factor Ij/Ij−1 nilpotent or
a uniform semigroup.
For example, if S = Mn(F ), then the chain
M1 ⊆ M2 ⊆ · · · ⊆ Mn = Mn(F ) has all factors completely
0-simple; where Mj = {a ∈ Mn(F ) | rank(a) ≤ j}.
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Why is the former relevant?

Theorem (Ananin)

Let R be a a finitely generated right Noetherian PI-algebra. Then
R embeds into the matrix ring Mn(F ) over a field extension F of
the base field K .

Important classes of semigroup algebras which fit in this cotext:

Theorem (Gateva-Ivanova, Jespers, JO)

Assume that K [S ] is right Noetherian and GKdim(K [S ]) <∞. If
S has a presentation of the form S = 〈x1, . . . , xn | R〉 where R is a
set of homogeneous (semigroup) relations, then K [S ] satisfies a
polynomial identity.

An important consequence: S has a finite ideal chain in S with
factors nilpotent or uniform!
(Because: 1) S is finitely generated by a previous theorem and
2) every multiplicative semigroup of matrices has such a chain.)
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Theorem (JO)

Let S be a finitely generated monoid with an ideal chain
S1 ⊆ S2 ⊆ · · · ⊆ Sn = S such that S1 and every factor Si/Si−1 is
either nilpotent or a semigroup of generalized matrix type. If
GKdim(K [S ]) <∞ and S satisfies the ascending chain condition
on right ideals then K [S ] is right Noetherian.

The proof shows that that cancellative subsemigroups of uniform
factors Si/Si−1 and S1 have groups of quotients that are finitely
generated and nilpotent-by-finite (so polycyclic-by-finite).
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Submonoids of polycyclic-by-finite groups

Theorem (Jespers, JO)

Let S be a submonoid of a polycyclic-by-finite group G . Then the
following conditions are equivalent:

1 K [S ] is right Noetherian,

2 S satisfies acc on right ideals,

3 there exists a normal subgroup H of G such that:
[G : H] <∞, S ∩ H is finitely generated and [H,H] ⊆ S,

4 K [S ] is left Noetherian.

Let F = [H,H]. So, in some sense, such K [S ] can be approached
from the perspective of the Noetherian group algebra K [F ] ⊆ K [S ]
and the Noetherian PI-algebra K [S/F ] ⊆ K [G/F ].

It follows, in this case, that S and K [S ] are finitely presented.
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Important motivating examples

Important classes of examples include algebras corresponding to
set theoretic solutions of the Yang-Baxter equation.
By a set theoretic solution of the Yang-Baxter equation we mean a
map r : X × X → X × X , where X = {x1, . . . , xn} is a set, such
that

r12r23r12 = r23r12r23,

where rij denotes the map X × X × X → X × X × X acting as r
on the (i , j) factor and as the identity on the remaining factor.

One considers solutions that are involutive (r 2 = id) and
non-degenerate (will be defined later).
One associates to r an algebra defined by the presentation
K 〈x1, . . . , xn〉/J where J consists of relations of the form xy = x ′y ′

if r(x , y) = (x ′, y ′).
This implies that J consists of

(n
2

)
relations.
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Theorem (Gateva-Ivanova, Van den Bergh)

These algebras are isomorphic to K [S ], where S is a submonoid of
a finitely generated torsion free abelian-by-finite group. They are
Noetherian PI domains of finite homological dimension and they
are maximal orders.

Simplest examples.
1. S = free commutative monoid,
2. S = 〈x , y | x2 = y 2〉.

These algebras have several other properties similar to the
properties of commutative polynomial rings. New examples are
very difficult to construct.

Height one prime ideals P are of a very special form:

P = aK [S ] = K [S ]a

for some a ∈ S and there are finitely many height one primes. In
particular, this can be used to prove that K [S ] is a maximal order.
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More general: quadratic monoids of skew type.

These are monoids with generators x1, x2, . . . , xn subject to
(n

2

)
quadratic relations of the form xixj = xkxl with (i , j) 6= (k , l) and,
moreover, every monomial xixj appears at most once in one of the
defining relations.

For every x ∈ X = {x1, . . . , xn}, let

fx : X → X

and
gx : X → X

be the maps such that

r(x , y) = (fx(y), gy (x)).

One says that S is non-degenerate if each fx and each gx is
bijective, with x ∈ X .
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Theorem (Jespers, JO, Van Campenhout and Cedo, JO)

Let S be a non-degenerate monoid of skew type. Then K [S ] is
right and left Noetherian and it is a finitely generated module over
a commutative subalgebra of the form K [A], for a submonoid A of
S.

The proof uses the structural approach explained before:
- first, certain ideal chain in S is constructed from the
combinatorial data, in order to prove K [S ] is Noetherian,
- also, one shows that GKdim(K [S ]) <∞,
- then we get PI by the theorem on semigroups defined by
homogeneous relation,
- finally, using the embedding theorem of Anan’in, we get that S is
a semigroup of matrices, and using this and with more work we get
the last assertion.
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Maximal orders

A monoid S which has a left and right group of fractions G is
called an order.
Then S is called a maximal order if there does not exist a
submonoid S ′ of G properly containing S and such that aS ′b ⊆ S
for some a, b ∈ G .
A nonempty subset I of G is called a fractional ideal of S if
SIS ⊆ I and cI , Id ⊆ S for some c, d ∈ S .

Assume now that S is a maximal order. For subsets A,B ⊆ G let
(A :l B) = {g ∈ G | gB ⊆ A} and (A :r B) = {g ∈ G | Bg ⊆ A}.
Then (S :r I ) = (S :l I ) for any fractional ideal I . One denotes this
set as (S : I ). Put I ∗ = (S : (S : I )), the divisorial closure of I . If
I = I ∗ then I is said to be divisorial.
S is said to be a Krull order if S satisfies also the ascending chain
condition on divisorial ideals contained in S . In this case the divisor
group D(S) (also defined as in ring theory) is a free abelian group.
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Theorem (Chouinard)

A commutative monoid algebra K [S ] is a Krull domain if and only
if S is a submonoid of a torsion-free abelian group which satisfies
the ascending chain condition on cyclic subgroups and S is a Krull
order in its group of quotients.
Furthermore, S is a Krull monoid if and only if S is the direct
product of its unit group U(S) and a monoid A = AA−1 ∩ F +,
where F+ is the positive cone of a free abelian monoid F .
Moreover, in this situation the class group of K [S ] equals the class
group of S.

The last property mentioned in the theorem allows one to simplify
the calculation of the class group of in several concrete classes of
examples, and it also shows that the height one primes of K [S ]
determined by the minimal primes of S are crucial.
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K.Brown characterized group algebras K [G ] of polycyclic-by-finite
groups G that are prime Noetherian maximal orders. In the PI-case
this turns out to be always the case if the group is also torsion-free.

Theorem (Brown)

Let G be a finitely generated torsion-free abelian-by-finite group.
Then the group algebra K [G ] is a Noetherian maximal order.
Moreover, all height one primes of K [G ] are principally generated
by a normal element.

An extension to the polycyclic-by-finite case is also known. Let G
be a polycyclic-by-finite group. Then, K [G ] is a prime Noetherian
maximal order if and only if ∆+(G ) = {1} (this means that G has
no nontrivial finite normal subgroups) and G is dihedral free.

G dihedral free: if H ⊆ G and H ∼= D∞ then H has infinitely many
conjugates.
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If S is a monoid with a torsion-free abelian-by-finite group of
quotients G (so K [S ] is a PI-domain), the maximal order property
of K [S ] is determined by the structure of S and can be reduced to
some ”local” monoids SP , with P a minimal prime ideal of S . Here

SP = {g ∈ G | Cg ⊆ S for some G -conjugacy class C

of G contained in S with C 6⊆ P}.

Theorem (Goffa, Jespers, JO)

Let be a submonoid of a finitely generated torsion-free
abelian-by-finite group. Then the monoid algebra is a Noetherian
maximal order if and only if the following conditions are satisfied:

1 S satisfies the ascending chain condition on one-sided ideals,

2 S is a maximal order in its group of quotients,

3 for every minimal prime ideal P of S the monoid SP has only
one minimal prime ideal.

Furthermore, in this case, each SP is a maximal order satisfying
the ascending chain condition on one-sided ideals.
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Recent results - a non-Noetherian example

Let
G = gr(a, b, c | ac = ca, ab = ba, bc = acb)

the Heisenberg group (a nilpotent group of class 2).
Let

M = 〈x , y , z , t | xy = yx , zt = tz , yz = xt = zx , zy = tx = yt〉

a finitely presented monoid. So K [M] carries some similarity to
Y-B algebras (

(n
2

)
quadratic relations).

It can be shown that: φ : M −→ G defined by

x 7→ c , y 7→ ac, z 7→ bc, t 7→ abc

is a homomorphism which also is an embedding. Hence

M ∼= φ(M) ⊆ G .

Note: K [M] is an Ore domain, but it is not Noetherian (use one of
theorems above: G is not abelian-by-finite while M has trivial
units; but this is also not hard to check directly).
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K [M] is the algebra used by Yekutieli and Zhang (as a
counterexample in the context of AS-regular rings), and recently by
Rogalski and Sierra - where it plays a key role in the classification
of 4-dimensional non-commutative projective surfaces.

Namely, a family of deformations of K [M] is considered. They are
of the form:

R(ρ, θ) = K 〈x1, x2, x3, x4 | fi = 0, i = 1, 2, 3, 4, 5, 6〉

where

f1 = x1(cx1 − x3) + x3(x1 − cx3)

f2 = x1(cx2 − x4) + x3(x2 − cx4)

f3 = x2(cx1 − x3) + x4(x1 − cx3)

f4 = x2(cx2 − x4) + x4(x2 − cx4)

f5 = x1(dx1 − x2) + x4(x1 − dx2)

f6 = x1(dx3 − x4) + x4(x3 − dx4)

for c = (θ − 1)/(θ + 1) and d = (ρ− 1)(ρ+ 1).
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Notice that R(1, 1) ∼= K [M] and it is embeddable in the skew
polynomial ring K (u, v)[t, σ] over the rational function field
K (u, v), where σ(v) = v , σ(u) = uv .

Theorem (Rogalski, Sierra)

If ρ, θ are algebraically independent over the prime subfield of K
then R(ρ, θ) is a Noetherian domain of global dimension 4 and
GK-dimension 4. And it is birational to P2.

(For a connected graded Noetherian domain we have
Qgr (R) ∼= D[t, t−1, σ], and if the division ring D is a field (then
D = K (X ) for a projective variety X ), then R is said to be
birational to X .)

So, this is a new motivation to study algebras of submonoids of
nilpotent groups that are not necessarily Noetherian.
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Theorem (Jespers, JO)

Let S be a submonoid of a finitely generated torsion-free nilpotent
group. Then the following properties hold.

1 S is a maximal order if and only if K [S ] is a maximal order.

2 If, moreover, S satisfies the ascending chain condition on right
ideals and is a maximal order then all elements of S are
normal (meaning: aS = Sa for every a ∈ S).

So, in the latter case, the theorem below applies.

Theorem (Jespers, JO)

Let S be a submonoid of a torsion-free polycyclic-by-finite group.
Assume that all elements of S are normal. Then the following
conditions are equivalent:

1 K [S ] is a Krull domain,

2 S is a Krull order,

3 S/U(S) is an abelian Krull order.
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Theorem (Jespers, JO)

Assume that S is a submonoid of a finitely generated nilpotent
group of class two. Assume that K [S ] is a Krull order. Then

(i) the derived subgroup G ′ of the quotient group G of S is
contained in S,

(ii) S = N(S),

(iii) S/G ′ is a commutative Krull order,

(v) K [S ] is a Krull domain for every field K .

On the other hand, if G ′ ⊆ S and S/G ′ is a Krull order then S is a
Krull order. If, furthermore, G is finitely generated then S is
finitely generated and K [S ] is right and left Noetherian.

Problem: what about nilpotent groups of a higher nilpotency class?
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