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1 Definition

(M. -) monoid, cancellative, commutative with 1

atomic decay of atom r € M into atoms x;

x strong atom y | ™, y atom = y and r assoc (no decay)



2 Examples
domain M = Z[/=5],- monoid M = {z € £} | 2z, + 5z = 313}, +

non—unique factorization

6=2.3 =(14++=5) (1-+-5) (3.3,7) = (3.0,2)+ (0,3,5) = (1,2,4)+ (2.1,3)
q = I ] Atoimns i1 fa x 7
decay
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unique facotrization into strong atoms by decay
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yr=2-q 20 r+oy=q+2g+2q1 + o



3 Decay Theorem

(M, ) Krull monoid, class group C'l{ M} torsion group
Theorem

(i) For each non—unit = € M there exist 1 < m(x) minimal and
g{x) € Z, such that
r.r.l-l.:j H q gl )

(] Strong Atoms

and this factorization 18 unique up to units
(and ordering of factors).

(ii) Exp CI{M) = lem{m|( ] | = atom }

(iii) For the decay rate §(x) = HME glx)
sup{d{x) | r atom} < k{FE{ﬂf]] (Er:::ss nmumber)



Corollary
(i) 8{xy) = d{x) + &(y) for non—units

(11

)

} M halt-factorial & &(x) = 1 for all atoms

(iii) M factorial < no atomic decay (all atoms strong)
)

(iv) Each class of C'l{ M) contains at least one prime divisor
= sup{d(x) | r atom } = K(CI{M))

Examples

domain CI{M) = C5, Exp (CH{M)) = 2, K{CH{M)) =
r atom: r° = qq’, §(x) = 1, M half-factorial (not factorial)
monoid CI{M) = Cy, Exp (CH{M)) = 3, E(CI{M)) =

xr atom: 3r = g + 2¢’, §(x) = 1, M halffact (not fact, Cl{M) # C2)



Extraction r.y € M non—units
Mz, y) =sup{® | 2™ divides y", m.n = 1}

(il

e For each strong atom g € M exists l{g) € Z. such that

r— l{g) Mg, )

is a homomorphism of the non—units of M onto (Z_, +).

Bv this strong atoms correspond to essential states on M.

. ff.l_l:'{i;:_::,l = A{q.I].ﬁ{I] — Z "-'."-{";"=I]
i

e mir) = Ecm{!{q] : [gﬂtf{“f;‘}-”*‘;‘]f”’i’-j:}}]_l}

Question Construction of a divisor theory purely by extraction?



4 Taking roots
M Krull monoid, C'l{ M) torsion group

= l_l E}ﬂ[ﬂ' _.}} T = 1_[ {q%:]"f':.-f]

i '.-:'r.mug § strong

£, x M with (m.x) ~ (n.y) iff z" = y™. ~ equivalence rel
RIM)=7Z.x M/.., class [m. x| of (m.r) m-th root of x
[m. x| - [n.y] = [mn, z"y™| well-defined

(R{M).-) monoid of roots of M, comm, unityv [1. 1],
(almost cancell)

Then for non—unit x € M
[1, ] = [[[m, q]"*), [m, g] m—th root of strong atom ¢

[, g unique up to [m., u] m—th root of unit u € M



5 Domains

D Krull domain, C'I{ D) torsion, M = D®
In particular: I maximal order O of an algebraic number field

J. Kaczorowski for D = (: «c € O irreducible is
completely irreducible iff &" has a unique factorization for each n
F. Halter—Koch for D arithmetical Dedekind: # € D irred. is

absolutely irreducible iff 7 | af.7 # a = 7 | 3" some n



Characterization of strong atoms

(i) D integral domain, g € ) atom
g strong < g can be separated from any non—ass. atom T
bv a prime ideal P, 1e.q ¢ Pxre P

(ii) D Krull domain, C'I{ D) torsion
For an atom g € ) are equivalent
® g strong
¢ ¢ absolutely/completely irreducible {primary)

e v(x) = Ag.r) defines an essential valuation

M monoid prime = strong atom = atom, none reversible
Theorem on atomic decay fails if there are too few or too “soft” strong

atoims

Example D = Z[5/—1], - too few strong atoms

.5]’”

DN

atoms, not strong decay continues with m



Atomic decay in maximal order O
Decay Theorem: 2™ = [T ¢, ¢ strong atoms (equiv ...)

Taking roots R = {a € C | a" € O some n > 1}, monoid
t: R —= R(O*), ¥{a) = [n, x] for a" = x well-def., surj. hom.
Decay Theorem: [1, 2] = [[[m. ¢]7*), m = m{x)

=x=]] aﬁ“’}, x, = ¢, @, m-th root of strong atom g

v, unique up to m-th root of units u € O (and ordering)

e T. Skolem, F. Halter—Koch (structure theorem for semigroups)
reason: group structure of an algebraic number field obtained since
a subgroup of the free divisor group is free

e E. Hecke takes roots (for a particular example) which he inter-
pretes as Kummers ideal numbers.

Question Do the roots a, of strong atoms correspond to Jacobi's
“wahre complexe Primzahlen”?



6 Diophantine monoids

M Krull monoid, M C Z" add, C'l{ M) torsion
r € M strong atom: y <mr,yatom,m=>1=y=r
Factorization by atomic decay. U # r & M

m{r)r = Z g{x) g unique {(up to ordering)
i ET-FIZ']II;I:',_
Roots (m,x) ~ (n,y) & nr = my, write — = =
vields x = 3 g(x)(:])

4 !'ﬂ.l'l:l[lg

In partinclar. AMf Diophantine monoid.

M={reZl | Ar = 0}, A € Z'" system of r linear Dioph.
equations in n nonnegative unknowns.

(equiv. Krullmonoid with finitely many essential states/finitely gene-
rated)

R. Stanley
o r € M fundamental r=y+z,y,ze M= y=00rz=

e r completely fundamental mr =y +z.m > lLy.z e M =
y=sr.0<s<im

Obwviously, fundamental < atom, completely f. 4+ strong atom

To determine the solution set M is extremely different

Example Magic squares: Stanlev develops theory, using generating
functions, to determine the number of squares. Known only for small
n, many conjectures.



1 equation in n unknowns

M={xzeZ" |ax1+ -+ apx, =0}, a; € Z, ged{a;} =1
Kl monoid, divisor theory, C'l{ M) maybe not torsion

Example M = {r € Z! |+ 25— 13— 2, =0L.Cl{M) =%
strong atoms g, = (1.0,1,0),g: = (0.1,0,1), g3 = (1.0,0, 1),

gy = (0,1,1,0)

Decay theorem not applicable, mdeed ¢, + g2 = g3 + q4.

All atoms are strong but “soft” (not primary).

Consider
M = '[-T = EE | 1r] + -+ Qpa) Tp-1= ﬂ'n-'rn}-. i € E+

CUM) = Ty b= 22 b, = ged{a; | j # i}

n—1

].-.[h:

1i=1




Decay Theorem m(x)r = » gl(r)g, uniqueness
-I'_ll' Htrl:l[lg

The strong atoms are, for 1 <i < n— 1,

l a a =
% = Solfaran] (a,e; + a;e,), e; i—th unit vector in Z",

Finding the solutions still diffienlt!
Wanted: Unique deseription by parameters

i |

o M factorial < a, = || ged{a; | 7 # i}
1=1

Soltions r = »_ nlq)g,nlg) € Z.

§ Strong

o M half-factorial < mir) = > glz), atoms x
-I'_II' Hr.l'l:l[lg

Questions Half-factoriality in terms of the a;?
Which decavs of atoms are possible?



1 equation in 3 unkowns

M={reZ |ax) +asrs =azrs}, ged{a; | 1 <i<3} =1

E.B. Elliott 1903 for az = 1.2,... 10 using generating functions.
M factorial iff as = dyds, d; = ged{a;. as}

: — (83 83 o8] | 62
solutions = (mdl._ ngt, mat + .'rldﬂ]._ m.n € &,

M half-factorial iff a; | a;d; —a;d;, 1 <i,j<?2
normalizing the equation: ged{a;.a;} = 1.1 # j.az | a1 — a2
q1 = (as.0,a1), g2 = (0, as, az), bv atomic decay, Cl{M) = Z,

13

rr = kiqy + kage,. k) + k2 = r.r | ag for atom x

= atoms given by (k,as — k.az + k “==2)

with parameters, 0 < k < aj.



Example a;r| + as2x9 = 313

factorial x = (3m,3n. ma; + naz).m.n € Z.

half-factorial atoms are r = (k.3 — k.a-> + F.:”';"E}
mmitial example 2z + bxrs = 319
atoms r = (k.3 — k5 —k)0 <k <3,
Just as stated

not half-factorial ror = kjq) + kage = (3k1. 3ks. k1ay + keas)
r| 3.k + ks < r(8(x) < K(CUM)) = k(Zs) = 1)

kiay + kaaa = (k1 + Fig}ﬂi + (a1 — ﬂ,gjkl = k1 +ka< 3
since 3§ a; — as

= k1 + k<2 k=00 k= 0vields g2 or u
= remaining case k) = ko= 1=3r=q + g2 = (3.3.a, + a»)

= o= (1,1, 4502)

For example, x| + 2xs = 35 not halt-factorial

since 3(1,1,1) = (3.0,1) + (0. 3,2) — decay rate of {1,1,1) is % < 1.
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