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§0. Introduction

What is now called Multiplicative Ideal Theory has its origin in R.
Dedekind’s work published in 1871 and was later developed in a more
general context by W. Krull, E. Noether and H. Prüfer about 1930.

P. Lorenzen in 1939 was probably the first to take a new point of view:
investigate the multiplicative structure without making reference, as far as
possible, to the additive structure. He presented an axiomatic treatment of
the theory of ideal systems in monoids and groups generalizing parts of the
results obtained by Dedekind and Krull.

With a similar point of view, P. Jaffard in 1960 in his book “Les Systèmes
d’Idéaux” provided a systematic study of the multiplicative theory of ideal
systems. However, his original style, not easy to read, greatly limited the
diffusion of his work and several of his results were rediscovered later by
various authors.
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Important improvements and generalizations to Lorenzen’s theory were
due to Karl Egil Aubert starting in 1953.

In the 70ties, the books “Multiplicative Theory of Ideals” by
Larsen-McCarty published in 1971 and “Multiplicative Ideal Theory” by
R. Gilmer (1968 & 1972) provide a more modern and systematic approach
to Dedekind, Kronecker, Krull, Prüfer classical multiplicative ideal theory
in the context of integral domains.

Finally in 1998 Franz Halter-Koch published his “Ideal Systems: An
introduction to multiplicative ideal theory” which is considered a
fundamental treatise on these topics, in the very general language of ideal
systems on commutative monoids.
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§1. Notation and Basic Definitions

An hereditary torsion theory for a commutative ring R is characterized by
the family F of the ideals I of R for which R/I is a torsion module (for
more details cf. B. Stenström’s book “Rings of Quotients”, Springer,
Berlin 1975; Ch. VI).

It turns out that such a family F of ideals is the family of the
neighborhoods of 0 for a certain linear topology of R.

The notion of localizing system (or topologizing system) was introduced
(in a more general context) by P. Gabriel in order to characterize such
topologies from an ideal-theoretic point of view (cf. Pierre Gabriel, La
localisation dans les anneaux non commutatifs Exposé No. 2, in Séminaire
Dubreil, Algèbre et théorie des nombres, 1959-1960; N. Bourbaki, 1961,
Ch. II, §2, Exercises 17-25).
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Let D be an integral domain with quotient field K . Let

• F(D) be the set of all nonzero D-submodules of K ,

• F(D) be the set of all nonzero fractional ideals of D, and

• f(D) be the set of all nonzero finitely generated D–submodules of K .

Then, obviously,

f(D) ⊆ F(D) ⊆ F(D).
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A localizing system F of an integral domain D is a family of integral ideals
of D such that
(LS1) If I ∈ F and J is an ideal of D such that I ⊆ J, then J ∈ F ;
(LS2) If I ∈ F and J is an ideal of D such that (J :D iD) ∈ F for each
i ∈ I , then J ∈ F .

Note that axioms (LS1) and (LS2) ensure, in particular, that F is a filter:
It is easy to see that if I , J ∈ F , then IJ ∈ F (and, thus, I ∩ J ∈ F).

To avoid uninteresting cases, assume that a localizing system F is
nontrivial, i.e., (0) /∈ F and F is nonempty.
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If F is a localizing system of D, then

DF := {x ∈ K | (D :D xD) ∈ F} =
⋃
{(D : I ) | I ∈ F}

is an overring of D called the ring of fractions of D with respect to F .

and, more generally, if E belongs to F(D),

EF := {x ∈ K | (E :D xD) ∈ F} =
⋃
{(E : I ) | I ∈ F}

belongs to F(DF ).

For instance, if S is a multiplicative subset of D, then F := {I ideal of
D | I ∩ S = ∅} is a localizing system of D and DF = S−1D.

Lemma

If F is a localizing system of an integral domain D, then

(1) (E ∩ H)F = EF ∩ HF , for each E ,H ∈ F(D);

(2) (E : F )F = (EF : FF ), for each E ∈ F(D) and for each F ∈ f(D).
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Localizing systems and star or semistar operations are strictly related
notions.

Recall that, in 1994, Okabe and Matsuda introduced the teminology of
semistar operation ? of an integral domain D , as a natural
generalization of the Krull’s notion of star operation (allowing D 6= D? ).
However, a general notion of a “closure operation” on submodules of the
total ring of fractions of a commutative ring, that includes the notion
semistar operation, was previously introduced by J. Huckaba in 1988.

• A mapping ? : F(D)→ F(D) , E 7→ E ? is called a semistar operation
of D if, for all 0 6= z ∈ K and for all E ,F ∈ F(D) , the following
properties hold:

(?1) (zE )? = zE ? ;

(?2) E ⊆ F ⇒ E ? ⊆ F ? ;

(?3) E ⊆ E ? and E ?? := (E ?)? = E ? .
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• When D? = D, we say that ? restricted to F(D) defines a star operation
of D

i.e., ? : F(D)→ F(D) verifies the properties (?2), (?3) and

(??1) (zD)? = zD , (zE)? = zE ?.

• A semistar operation of finite type ? is an operation such that ? = ?
f

where

E ?
f :=

⋃
{F ? | F ⊆ E ,F ∈ f(D)} for all E ∈ F(D).
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§2. Localizing Systems, Module Systems and Semistar Operations

For every overring T of D the operation ?{T} defined for all E ∈ F(D) by
setting

E ?{T} := ET

is a semistar operation of finite type.

It is straightforward that if T is a flat D-module then ?{T} is a stable
semistar operation.
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Note that, given a localizing system F on D , we have two canonical
semistar operations in D,

• ?F defined, for all E ∈ F(D), by setting E ?F := EF ;

• ?{DF} defined, for all E ∈ F(D), by setting

E ?{DF} := EDF .

In general, EF ⊇ EDF , and maybe EF % EDF even if E is a proper
integral ideal of D. In other words, ?{DF} ≤ ?F .

For instance, let V be a valuation domain with idempotent maximal ideal M, of the type

V := K + M, where K is a field. Let k be a proper subfield of K and define R := k + M. Since

M is idempotent it is easy to see that F = {M, R} is a localizing system of R. Then

MF = RF = (M : M) = V and MRF = MV = M.
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The following result characterizes when the equality holds.

Proposition

Let F be a localizing system of an integral domain D. The following are
equivalent:

(i) ?{DF} = ?F ;

(ii) IDF = IF for each integral ideal I of D;

(iii) DF is D-flat and F = {I | I ideal of D and IDF = DF}.
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• The condition that DF is D-flat is not equivalent to (i) and (ii) in the
previous result.

Let V be a valuation domain and P a nonzero idempotent prime ideal of V , and set
F̂(P) := {I | I ideal of V and I ⊇ P}.
Then VF̂(P) = VP and PVF̂(P) = PVP = P. Moreover, PF̂(P) = (P : P) = VP , since

P ∈ F̂(P), by the previous observation. Therefore,

PVF̂(P) ( PF̂(P) = VF̂(P) and VF̂(P) is obviously V -flat
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It is easy to see that if ? is a semistar operation on D, then

F? := {I | I ideal of D with I ? ∩ D = D}
= {I | I ideal of D with I ? = D?}
= {I | I ideal of D with 1 ∈ I ?}

is a localizing system of D, called the localizing system associated to ?.
Similarly, in case of semistar operations of finite type, we can consider the
localizing system F?

f .

On the other hand, a localizing system F is called a localizing system of
finite type if for each ideal I ∈ F there exists a finitely generated ideal J of
D such that J ⊆ I and J ∈ F . It is easy to see that, for each localizing
system F ,

Ff := {I ∈ F | I ⊇ J for some finitely generated ideal J ∈ F}

is a localizing system, called the localizing system of finite type associated
to F .
It is easy to verify that F?

f is a localizing system of finite type and
F?

f = (F?)f .
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Theorem

(A) Let F be a localizing system of an integral domain D and let ?F be
the semistar operation on D associated with F . Then

F = F?F = {I ideal of D | IF ∩ D = D}.

(B) Let ? be a semistar operation on D and let F? be the localizing
system associated with ?. Then ?F? ≤ ?. Moreover,

?F? = ? ⇔ ? is a stable semistar operation.
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Both notions of semistar operation and localizing system were greatly
extended in the setting of cancellative monoids.

The notion of module system introduced by Franz Halter-Koch in 2001 is
a common generalization of that of ideal system (developed in Franz’s
book published in 1998) and that of semistar operation.

This general theory sheds new light on the connection of localizing
systems with semistar operations and on a general theory of flatness and
allows a new presentation of the theory of generalized integral closures.
In particular, it allows a purely multiplicative theory of general Kronecker
function rings, starting from some Lorenzen’s ideas, as presented in a
recent paper by F. Halter-Koch (Comm. Algebra 2015).
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We need some notation.

• A monoid H is a multiplicative commutative semigroup with a unit
element 1 ∈ H and a zero element 0 ∈ H .
• H• := H \ {0}.
• H× is the group of all invertible elements of H.
• A groupoid is a monoid G satisfying G • = G×.
• A monoid H is called cancellative if every a ∈ H• is cancellative.
• Every cancellative monoid H possesses quotient groupoid G ⊇ H (this is
a groupoid G such that G • is a quotient group of H•).
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Let G be a groupoid and P(G ) the power set of G .

• A module system on G is a map r : P(G )→ P(G ), X 7→ Xr such that
the following properties are fulfilled for all X ,Y ∈ P(G ) and c ∈ G

(MS1) X ∪ {0} ⊆ Xr ;

(MS2) X ⊆ Yr ⇒ Xr ⊆ Yr ;

(MS3) (cX )r = cXr .

• An r -module of G is a subset J ⊆ G such that J = Jr and an r -monoid
of G is an r -module which is a submonoid of G .

Marco Fontana (“Roma Tre”) Halter-Koch’s contributions to ideal systems 18 / 44



I §0 J I §1 J I §2 J I §3 J I §4 J

Let G be a groupoid and P(G ) the power set of G .

• A module system on G is a map r : P(G )→ P(G ), X 7→ Xr such that
the following properties are fulfilled for all X ,Y ∈ P(G ) and c ∈ G

(MS1) X ∪ {0} ⊆ Xr ;

(MS2) X ⊆ Yr ⇒ Xr ⊆ Yr ;

(MS3) (cX )r = cXr .

• An r -module of G is a subset J ⊆ G such that J = Jr and an r -monoid
of G is an r -module which is a submonoid of G .

Marco Fontana (“Roma Tre”) Halter-Koch’s contributions to ideal systems 18 / 44



I §0 J I §1 J I §2 J I §3 J I §4 J

Let G be a groupoid and P(G ) the power set of G .

• A module system on G is a map r : P(G )→ P(G ), X 7→ Xr such that
the following properties are fulfilled for all X ,Y ∈ P(G ) and c ∈ G

(MS1) X ∪ {0} ⊆ Xr ;

(MS2) X ⊆ Yr ⇒ Xr ⊆ Yr ;

(MS3) (cX )r = cXr .

• An r -module of G is a subset J ⊆ G such that J = Jr and an r -monoid
of G is an r -module which is a submonoid of G .

Marco Fontana (“Roma Tre”) Halter-Koch’s contributions to ideal systems 18 / 44



I §0 J I §1 J I §2 J I §3 J I §4 J

Let G be a groupoid and P(G ) the power set of G .

• A module system on G is a map r : P(G )→ P(G ), X 7→ Xr such that
the following properties are fulfilled for all X ,Y ∈ P(G ) and c ∈ G

(MS1) X ∪ {0} ⊆ Xr ;

(MS2) X ⊆ Yr ⇒ Xr ⊆ Yr ;

(MS3) (cX )r = cXr .

• An r -module of G is a subset J ⊆ G such that J = Jr and an r -monoid
of G is an r -module which is a submonoid of G .

Marco Fontana (“Roma Tre”) Halter-Koch’s contributions to ideal systems 18 / 44



I §0 J I §1 J I §2 J I §3 J I §4 J

Let G be a groupoid and P(G ) the power set of G .

• A module system on G is a map r : P(G )→ P(G ), X 7→ Xr such that
the following properties are fulfilled for all X ,Y ∈ P(G ) and c ∈ G

(MS1) X ∪ {0} ⊆ Xr ;

(MS2) X ⊆ Yr ⇒ Xr ⊆ Yr ;

(MS3) (cX )r = cXr .

• An r -module of G is a subset J ⊆ G such that J = Jr and an r -monoid
of G is an r -module which is a submonoid of G .

Marco Fontana (“Roma Tre”) Halter-Koch’s contributions to ideal systems 18 / 44



I §0 J I §1 J I §2 J I §3 J I §4 J

Let G be a groupoid and P(G ) the power set of G .

• A module system on G is a map r : P(G )→ P(G ), X 7→ Xr such that
the following properties are fulfilled for all X ,Y ∈ P(G ) and c ∈ G

(MS1) X ∪ {0} ⊆ Xr ;

(MS2) X ⊆ Yr ⇒ Xr ⊆ Yr ;

(MS3) (cX )r = cXr .

• An r -module of G is a subset J ⊆ G such that J = Jr and an r -monoid
of G is an r -module which is a submonoid of G .

Marco Fontana (“Roma Tre”) Halter-Koch’s contributions to ideal systems 18 / 44



I §0 J I §1 J I §2 J I §3 J I §4 J

Let r be a module system on G and H a submonoid of G .

• The map r [H] : P(G )→ P(G ), X 7→ (XH)r is called the module system
(on G ) extension of r with H and it is easy to see that r = r [H] if and
only if H ⊆ {1}r .

• If H is an r -monoid, submonoid of G , then
rH := r [H]|P(H) : P(H)→ P(H), X 7→ (XH)r is an “usual” ideal system on
H called the ideal system induced by r on H.

• Disregarding the additive structure, a field (respectively, an integral
domain) is a groupoid (respectively, a cancellative monoid). In this
particular situation, the notion of module system (respectively, ideal
system) corresponds –in a natural way– to the notion of semistar
(respectively, star) operation.
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Let r be a module system on G , H a submonoid of G and Pf (X ) the set
of all finite subsets of a subset X of G .

• The map rf : P(G )→ P(G ), X 7→ Xrf :=
⋃
{Er | E ∈ Pf (X )} is a

module system called the module system of finite type associated to r ;
r is called a module system of finite type if r = rf .

• If H is an r -monoid, submonoid of G and if r is a module system of
finite type then rH := r [H]|P(H) : P(H)→ P(H), X 7→ (XH)r is an ideal
system of finite type on H.
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• Let H be a cancellative monoid and let q be an ideal system of finite
type on H. Denote by Iq the set of q-ideals of H and define a
q-multiplication of q-ideals by setting I ·q J := (IJ)q.

A subset L ⊆ Iq is called a q-localizing system on H if
(q-LS1) If I ∈ L and J ∈ Iq is such that I ⊆ J, then J ∈ L;
(q-LS2) If I ∈ L and J ∈ Iq such that (J : iH) ∈ L for each i ∈ I , then
J ∈ L.

Proposition

If L is q-localizing system on a cancellative monoid H having G as a
quotient groupoid, then
• the map ρL : P(G )→ P(G ), X 7→ XL :=

⋃
{(Xq : L) | L ∈ L} =

{y ∈ G | (Xq :H y) ∈ L} is a module system on G, called the module
system induced by L.
• the map ρL|P(HL) : P(HL)→ P(HL) is an ideal system on HL.
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• Let H be a cancellative monoid, G its quotient groupoid, let q denote
an ideal system of finite type on H and r a module system on G such that
q ≤ r . The module system r is called q-stable if (I ∩ J)r = Ir ∩ Jr for all
q-modules I and J.

Next result provides an example of the general statements obtained by
Franz Halter-Koch in the module systems setting:

Theorem, Halter-Koch, 2001

Let H be a cancellative monoid, G its quotient groupoid, let q denote an
ideal system of finite type on H and r a module system on G, q ≤ r .
• If LSq(H) denotes the set of all q-localizing systems on H and
ModSys(G ) the set of all module systems on G , then the canonical map
ρ : LSq(H)→ModSys(G ), L 7→ ρL is injective and order preserving.
• The image of this map is the set {r is a module system on G |
r is q-stable and q ≤ r = ρΛ}, where Λ := Λq,r := {I ∈ Iq(H) | 1 ∈ Ir} is
the q-localizing system associated to r (and q).
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§3. Halter-Koch’s axiomatic approach to a general version of the
Kronecker function ring and spaces of valuation domains

Toward the middle of the XIXth century, E.E. Kummer discovered that the
ring of integers of a cyclotomic field does not have the unique factorization
property.

Few years later, in 1847 Kummer introduced the concept of “ideal
numbers” to re-establish some of the factorization theory for cyclotomic
integers with prime exponents. (In 1856 he generalized his theory to the
case of cyclotomic integers with arbitrary exponents.)

R. Dedekind in 1871 (XI supplement to Dirichlet’s “Vorlesungen über
Zahlentheorie”) extended Kummer’s theory to the case of general
algebraic integers.
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L. Kronecker has essentially achieved a similar goal in 1859, about 12 years
after Kummer’s pioneering work, but he published nothing until 1882 (the
paper appeared in honor of the 50th anniversary of Kummer’s doctorate).

Kronecker’s theory holds in a larger context than that of ring of integers of
algebraic numbers and solves a more general problem.

The primary objective of his theory was to extend the concept of
divisibility in such a way any finite set of elements has a GCD (greatest
common divisor).

*********
Main references for the “classical” Kronecker function ring

L. Kronecker (1882), W. Krull (1936), H. Weyl (1940), H.M. Edwards (1990).
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With a modern terminology and notation, the Kronecker function ring of a
Dedekind domain D is given by:

Kr(D) :=
{

f
g | f , g ∈ D[X ] and c(f ) ⊆ c(g)

}
=

{
f ′

g ′ | f ′, g ′ ∈ D[X ] and c(g ′) = D
}
,

(where c(h) denotes the content of a polynomial h ∈ D[X ], i.e. the ideal
of D generated by the coefficients of h).

Note that the previous equality holds since we are assuming that D is a Dedekind domain (e.g., the integral closure of a PID D
0

in a finite field extension K of the quotient field K
0

of D
0

).

In this case, for each polynomial g ∈ D[X ], c(g) is an invertible ideal of D and, by choosing a polynomial u ∈ K [X ] such that

c(u) = (c(g))−1, then we have f /g = uf /ug = f ′/g′, with f ′ := uf , g′ := ug ∈ D[X ] and, obviously, c(g′) = D.
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The fundamental properties of the Kronecker function ring are the
following:

(1) Kr(D) is a Bézout domain (i.e. each finite set of elements has a GCD
and the GCD can be expressed as linear combination of these
elements) and D[X ] ⊆ Kr(D) ⊆ K (X ) (in particular, the field of
rational functions K (X ) is the quotient field of Kr(D)).

(2) Let a0 , a1 , . . ., an ∈ D and set f := a0 + a1X + . . .+ anX n ∈ D[X ], then:

(a0 , a1 , . . ., an)Kr(D) = f Kr(D) (thus, GCD Kr(D)(a0 , a1 , . . ., an)= f ) ,

f Kr(D) ∩ K =(a0 , a1 , . . ., an)D = c(f )D (hence, Kr(D) ∩ K = D) .
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Kronecker function rings play a special role in the investigation of spaces
of valuation domains.

The motivations for studying, from a topological point of view, spaces of
valuation domains come from various directions and, historically, mainly

• from Zariski’s work for the reduction of singularities of an algebraic
surface and, more generally, for establishing new foundations of algebraic
geometry by algebraic means
(see [Zariski, 1939], [Zariski, 1944] and [Zariski-Samuel, 1960]).
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NOTATION

• Let K be a field and A a subring (possibly, a subfield) of K

• Let

Zar(K |A) := {V | V valuation domain with A ⊆ V ⊆ K = qf(V )} .

• In case A is the prime subring of K , then Zar(K |A) includes all valuation
domains with K as quotient field and we denote it by simply Zar(K ).

• In case A is an integral domain with quotient field K , A 6= K , then
Zar(K |A) is the set of all valuation overrings of A and we simply denote it
by Zar(A).
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• A first topological approach to the space Zar(K |A) is due to O.
Zariski who proved the quasi-compactness of this space, endowed with
what is now called Zariski topology
(see [Zariski, 1944] and [Zariski-Samuel, 1960]).

The topological structure on Z := Zar(K |A) is defined by taking, as a
basis for the open sets, the subsets UF := {V ∈ Z | V ⊇ F} for F
varying in the finite subsets of K , i.e., if F := {x1, x2, . . . , xn}, with
xi ∈ K , then

UF = Zar(K |A[x1, x2, . . . , xn]).

• The space Z = Zar(K |A), equipped with this topology, is usually
called the Zariski-Riemann space (or, sometimes, the abstract
Zariski-Riemann surface) of K over A.

• Note that recently B. Olberding, 2014 has introduced and studied also
a natural structure of locally ringed space on Z = Zar(K |A), which
realizes the Zariski-Riemann space as a projective limit of projective
integral schemes over Spec(A) whose function field is a subfield of K .
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From the collaboration with David Dobbs in 1986/87, we published two
papers (one of these, joint also with Rich Fedder) concerning the
topological and algebraic structure of the space Zar(A).
(see [Dobbs-Fedder-Fontana, 1987], [Dobbs-Fontana, 1986]).

• First we proved, using a purely topological approach that:
If K is the quotient field of A then Zar(A), endowed with the Zariski
topology, is a spectral space in the sense of [Hochster, 1969]
(see [Dobbs-Fedder-Fontana, 1987]).

This result was later proved by several authors with a variety of different
techniques:

• in [Kuhlmann, 2004, Appendix], using a model-theoretic approach;
• in [Finocchiaro, 2013, Corollary 3.3] using new topological methods;

• in [Schwartz, 2013], using the inverse spectrum of a lattice ordered abelian group (via

the Jaffard-Ohm Theorem).
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• Immediately after the first paper, in collaboration with David Dobbs,
we proved a more precise result, exhibiting explicitly an integral domain A
with a canonical map ϕ : Zar(A)→ Spec(A) realizing a topological
homeomorphism (with respect to the Zariski topologies).

We need some preliminaries.

Let A be an integral domain with quotient field K and let A be the
integral closure of A, extending Kronecker’s classical theory (concerning
rings of algebraic numbers), in [Krull, 1936] the author introduced on A
what we call now

• the Kronecker function ring of A with respect to the (star) b–operation
(or, completion), i.e., the integral domain

Kr(A, b) := {f /g ∈ K (X ) | c(f )b ⊆ c(g)b} ,

where the b–operation is defined, for each nonzero fractional ideal E of A
by Eb :=

⋂
{EV | V ∈ Zar(A) = Zar(A)} .
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Using the previous notation, we have

Theorem 1, [Dobbs-Fontana, 1986]

Let A be an integral domain with quotient field K, and let A := Kr(A, b).
The canonical map

ϕ : Zar(A)→ Spec(A) , (V ,M) 7→ M(X ) ∩A

is a homeomorphism (with respect to the Zariski topologies).

Note that this theorem did not concern the more general space Zar(K |A).

A result including the case of Zar(K |A) was possible many years later,
only after appropriate generalizations of the Kronecker function ring were
introduced and studied.
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• A first generalization of the Kronecker function ring for any integral
domain (not necessarily integrally closed) and for any semistar operation
(non necessarily e.a.b., as the b-operation is) was given and studied by
Fontana-Loper in two papers published in 2001 and 2003.

• Another generalization, based on an axiomatic approach, was given in
[Halter-Koch, 2003].

More precisely, Halter-Koch gives the following “abstract” definition:

Let K be a field, X an indeterminate over K , R a subring of K (X ) and
A := R ∩ K . If

• X ∈ U(R) (i.e. X is a unit in R );

• f (0) ∈ f ·R for each f ∈ K [X ] ;

then R is called a K –function ring of A.
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Using only these two axioms, he proved that R (in K (X )) “behaves as a
classical Kronecker function ring” for A, i.e.,

Theorem, Halter-Koch 2003

Let R be a K -function ring of A = R ∩ K , then:

• R is a Bézout domain with quotient field K (X ).

• A is integrally closed in K .

• For each f := a0 + a1X + · · ·+ anXn ∈ K [X ], then
(a0, a1, . . . , an)R = fR .
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Using Halter-Koch’s K –function rings, it was proven in
[Kwegna-Heubo, 2010] and, independently, in
[Finocchiaro-Fontana-Loper, 2013b] as a particular case of a more general
result the following:

Theorem 2

Let A be any subring of K , and let

Kr(K |A) :=
⋂
{V (X ) | V ∈ Zar(K |A)}.

Note that A := Kr(K |A) is a K−function ring, by F. Halter-Koch’s
theory.

• The canonical map σ : Zar(K |A)→ Zar(K (X )|A) , V 7→ V (X ) is an
homeomorphism.

• The canonical map ϕ : Zar(K |A) ∼= Zar(K (X )|A)→ Spec(A) be the
map sending a valuation overring of A into its center on A, composed
with the homeomorphism σ, establishes a homeomorphism (with respect
to the Zariski topologies).
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§4. Zariski topology on spaces of overrings and spaces of semistar
operations

In [B. Olberding, 2010] the author –inspired by Zariski’s ideas– considers
an extension of the Zariski topology on
• Overr(A) the set of the integrally closed overrings of an integral
domain A with quotient field K .
This topology can be easily extended on

• Overr(A) the set of all the overrings of A and, in particular on

• OverLoc(A) (resp. OverLoc(A)) the set of the local overrings (resp.
the set of the local integrally closed overrings) of A
(see also Zariski-Samuel treatise, volume II, page 115).

• More generally, in [Finocchiaro-Spirito, 2014], the authors have further
extended the setting where it is natural to consider a Zariski-like topology.
In this new setting, the set Overr(A), Overr(A), OverLoc(A)
OverLoc(A) (and, hence, in particular Zar(A) and Spec(A)),
endowed with their Zariski topology, become in a natural way topological
subspaces.
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Let SStar(A) be the set of all the semistar operations on an integral
domain A with quotient field K . For each nonzero sub-A-module E of K ,
set

UE := {? ∈ SStar(A) | 1 ∈ E ?} .

The collection UE , for E varying in the set of nonzero sub-A-modules of
K , form a subbasis for the open sets of a topology on SStar(A), called
the Zariski topology.
It is easy to see that, for F varying in the set of nonzero finitely generated
fractional ideals of A, the collection

VF := UF ∩ SStarf (A) := {? ∈ SStarf (A) | 1 ∈ F ?}

(respectively, ṼF := UF ∩ S̃Star(A) := {? ∈ S̃Star(A) | 1 ∈ F ?})

forms a subbasis for the open sets of the induced (Zariski) topology on the
set SStarf (A) of all the semistar operations of finite type on A

(respectively, on the set S̃Star(A) of all the stable semistar operations
of finite type on A).
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(respectively, ṼF := UF ∩ S̃Star(A) := {? ∈ S̃Star(A) | 1 ∈ F ?})

forms a subbasis for the open sets of the induced (Zariski) topology on the
set SStarf (A) of all the semistar operations of finite type on A

(respectively, on the set S̃Star(A) of all the stable semistar operations
of finite type on A).

Marco Fontana (“Roma Tre”) Halter-Koch’s contributions to ideal systems 37 / 44



I §0 J I §1 J I §2 J I §3 J I §4 J

Let SStar(A) be the set of all the semistar operations on an integral
domain A with quotient field K . For each nonzero sub-A-module E of K ,
set

UE := {? ∈ SStar(A) | 1 ∈ E ?} .

The collection UE , for E varying in the set of nonzero sub-A-modules of
K , form a subbasis for the open sets of a topology on SStar(A), called
the Zariski topology.
It is easy to see that, for F varying in the set of nonzero finitely generated
fractional ideals of A, the collection

VF := UF ∩ SStarf (A) := {? ∈ SStarf (A) | 1 ∈ F ?}
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It can be shown that

Lemma 4

• For each ? ∈ SStar(A), Cl(?) = {?′ ∈ SStar(A) | ?′ ≤ ?}.

• The canonical map SStar(A)→ SStarf (A), ? 7→ ?f , is a continuous
retraction.

• The canonical map Overr(A)→ SStarf (A), B 7→ ?{B}, is a
topological embedding (where ?{B} ∈ SStarf (A) is defined by
E ?{B} := EB, for each nonzero sub-A-module E of K ).
The map SStarf (A)→ Overr(A), ? 7→ A? , is a continuous retraction.
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We collect in the following theorem some results that can be obtained
from the work by [Finocchiaro, 2013], by [C. Finocchiaro-D. Spirito, 2014]
and by [C. Finocchiaro-M. Fontana-D. Spirito, in preparation]

Theorem 5

Let A be an integral domain. Then,

SStarf (A) , S̃Star(A) , Overr(A) , Overr(A) , OverLoc(A) and
OverLoc(A) , endowed with their Zariski topologies, are spectral spaces.

These results were obtained by means of new techniques and, in particular,
by means of a characterization, given in [Finocchiaro, 2013], for a
topological space to be a spectral space using “appropriate” ultrafilter
topologies.
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Canonical embeddings of spectral spaces
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Let B denote a non-empty collection of overrings of A and, for any B ∈ B,
let ?B be a semistar operation on B. An interesting question posed in
[Chapman-Glaz, 2000, Problem 44] is the following:

Problem. Find conditions on B and on the semistar operations ?B under
which the semistar operation ?B on A defined by
E?B :=

⋂
{(EB)?B | B ∈ B}, for all E ∈F(A), is of finite type.

Note that, if A =
⋂
{B | B ∈ B} is locally finite and each ?B is a star

operation on B of finite type, then in [D. D. Anderson, 1988, Theorem 2]
the author proved that ?B is a star operation on A of finite type.
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Through the years, several partial answers to this question were given and
they are mainly topological in nature.

• For example, in [Fontana-Huckaba, 2000, Corollary 4.6], a (topological)
description of when the semistar operation ?B is of finite type was given
when B is a family of localizations of A and ?B is the identity semistar
operation on B, for each B ∈ B.

• More recently, in [Finocchiaro-Fontana-Loper, 2013b], it was proved
that if B is a quasi-compact subspace in Zar(K |A) (endowed with the
Zariski topology) and ?B is the identity (semi)star operation on B, for
each B ∈ B, then ?B is of finite type.
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Another more natural way to see the problem stated above is the
following.

Problem. Let S be any non-empty collection of semistar operations on A
and let ∧S be the semistar operation defined by E∧S :=

⋂
{E ? | ? ∈ S}

for all E ∈ F(A).
Find conditions on the set S for the semistar operation ∧S on A to be of
finite type.

Note that it is not so difficult to show that the constructions of the
semistar operations of the type ?B and ∧S are essentially equivalent, in
the sense that every semistar operation ?B can be interpreted as one of
the type ∧S , and conversely.
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Thanks!
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