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The generalized Noether number

D(A)

β(G ) Dk(A)

? βk(G )

Definition
βk(R) for a graded ring R is the greatest d such that Rd 6⊆ Rk+1

+ .

We write βk(G ,V ) := βk(F [V ]G ) and βk(G ) := supV βk(G ,V ).

(This is finite as βk(G ,V ) ≤ kβ(G ,V ) while β(G ,V ) ≤ |G | by
Noether’s classical result. )



Reduction lemma for normal subgroups

Theorem (Delorme-Ordaz-Quiroz)

For any abelian groups B ≤ A:

Dk(A) ≤ DDk (B)(A/B)

Theorem (Cz-D)

For any normal subgroup N / G :

βk(G ,V ) ≤ ββk (G/N)(N,V )



Proof.
Let F [V ] = F [x1, ..., xn] and F [V ]N = F [f1, ..., fr ].
Obviously F [V ]N is a G/N-module and F [V ]G = (F [V ]N)G/N .
This means that any g ∈ F [V ]G can be written as

g(x1, ..., xn) = p(f1, ..., fr )

for some G/N-invariant polynomial p. Let g be homogeneous of
degree deg(g) > βs(N) for some s. This enforces deg(p) > s.
Now set s = βk(G/N). Then p is a sum of k + 1-fold products
of non-constant G/N-invariants, whence g ∈ (F [V ]G+)k+1.



Reduction lemma for any subgroups H ≤ G

Theorem (Cz-D)

βk(G ,V ) ≤ βk[G :H](H,V )

provided that one of the following conditions holds:

I char(F ) = 0 or char(F ) > [G : H]

I H / G and char(F ) does not divide [G : H]

I char(F ) does not divide |G |

Open problem: the ”baby Noether gap”

It is believed that in fact the above inequality holds whenever
char(F ) does not divide [G : H]



Lower bounds

For abelian groups B ≤ A it is trivial that Dk(A) ≥ Dk(B).
B. Schmid has already proved for any subgroup H ≤ G that:

β(G , IndGHV ) ≥ β(H,V )

A strenghtened version of her proof yields the following:

Theorem
Let N / G such that G/N is abelian. Let V be an N-module and
U a G-module on which N acts trivialy. Then for any r , s ≥ 1

βr+s−1(G , IndGNV ⊕ U) ≥ βr (N,V ) + Ds(G/N,U)− 1

Open problem

Can we lift the restriction that G/N is abelian? How far?



Lower bound for direct products

Theorem (Halter-Koch)

For any abelian groups A, B we have:

Dr+s−1(A× B) ≥ Dr (A) + Ds(B)− 1

Theorem (Cz-D)

Let V be a G-module and U an H-module. Then for any r , s ≥ 1

βr+s−1(G × H,V ⊕ U) ≥ βr (G ,V ) + βs(H,U)− 1



The main idea for the case r = s = 1 is the following:

I denote by d(A) the maximal length of a zero-sum free
sequence over A; it is easily seen that d(A) = D(A)− 1

I let S and T be a zero-sum free sequence over A and B of
length d(A) and d(B), respectively

I ST is obviously a zero-sum free sequences over A× B,
whence d(A× B) ≥ d(A) + d(B)

How to generalize this argument for non-abelian groups?



The top degree of coinvariants

The analogue of a zero-sum free sequence for a non-abelian group
is the notion of a coinvariant, i.e. an element of the factor ring
F [V ]G := F [V ]/F [V ]G+F [V ].

Observation
For any abelian group A we have:

Dk(G ) = dk(G ) + 1

Theorem (Cz-K)

If V is a G -module such that βk(G ,V ) = βk(G ) then

βk(F [V ]G ) = βk(F [V ],F [V ]G ) + 1

where βk(F [V ],F [V ]G ) gives (for k = 1) the top degree of the
ring of coinvariants.



The growth rate of βk(G ,V ) as a function of k

We started from an easy observation that for any ring R

0 ≤ βs(R)

s
≤ βt(R)

t
for any s ≥ t ≥ 1

Hence limk→∞ βk(R)/k exists! What is its value?

Theorem (Freeze-W. Schmid)

For any abelian group A there are integers k0(A), D0(A) such that

Dk(A) = k exp(A) + D0(A) for any k > k0(A)

Theorem (quasi-linearity of βk(R))

There are some non-negative integers k0(R), β0(R) such that

βk(R) = kσ(R) + β0(R) for any k > k0(R)



Some cases where σ(G ) is known

Definition
Let σ(R) be the smallest d ∈ N such that there are some elements
f1, ..., fr ∈ R of degree at most d whose common zero locus is {0}
— or equivalently such that R is a finite module over F [f1, ..., fr ].

Previously σ(G ) was studied only for linearily reductive groups.

Theorem
For an abelian group A we have σ(A) = exp(A).

Theorem
For G = A o−1 Z2 we have σ(G ) = exp(A).

Theorem
For any primes p, q such that q | p − 1 we have σ(Zp o Zq) = p.

This later holds also if the characteristic of the base field F equals
q, as Kohls and Elmers showed.



Properties of σ(G ,V ) in the non-modular case

Theorem (1)

σ(G ,V1 ⊕ ...⊕ V2) =
n

max
i=1

σ(G ,Vi )

Theorem (2)

σ(G ,V ) ≤ σ(G/N)σ(N,V ) if N / G

Theorem (3)

σ(H,V ) ≤ σ(G ,V ) ≤ [G : H]σ(H,V ) if H ≤ G

Kohls and Elmers extended the scope of this results.



A general upper bound on σ(G )

Theorem (Cz-D)

Let G be a non-cyclic group and q the smallest prime divisor of its
order. Then

σ(G ) ≤ 1

q
|G | (1)

Open problem

Classify the groups with β(G ) ≥ 1
q |G |! (For q = 2 it’s done.)

Theorem (Kohls-Elmers)

Suppose the base field has caracteristic p and P is the Sylow
p-subgroup of G . If G is p-nilpotent and P is not normal in G
then (1) remains true.



Generalizing results on ”short” zero-sum sequences

Definition
For any ring R let η(R) denote the smallest degree d0 such that
for any d > d0 we have Rd ⊆ R≤σ(R)R.

A straightforward induction argument gives

βk(R) ≤ (k − 1)σ(R) + η(R)

For abelian groups H ≤ G there is a powerful result which
combines in a sense the above fact with the reduction lemmata:

dk(G ) ≤ dk(H) exp(G/H)+max{d(G/H), η(G/H)−exp(G/H)−1}

This also has a generalization in the framework of the invariant
theory of non-abelian groups.



The inductive method and the ”contractions”

I for a subgroup B ≤ A of an abelian group A consider the
natural epimorphism φ : A→ A/B

I for a sequence S over A take a factorization S = S0S1....Sl

such that φ(Si ) is a zero-sum sequence over A/B for all i ≥ 1

I investigate the ”contracted” sequence (σ(S1), ...., σ(Sl)) as a
sequence over B (here σ(Si ) denotes the sum of a sequence)

This allows to derive information on the zero-sum sequences over
A from previous knowledge on the zero-sum sequences over B

We extended this method to a class of non-abelian groups, namely
those which have a cyclic subgoup of index 2



What else could be generalized to a non-abelian setting?

I the definition of s(A) and related results, like the
Erdos-Ginzburg-Ziv theorem

I the weighted Davenport constant

I the small and the large Davenport constant

I etc. etc.

Thank you for your attention!


