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The generalized Noether number
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? Bk(G

Definition
Bk(R) for a graded ring R is the greatest d such that Ry Rle.
We write fx(G, V) := Bk(F[V]®) and Bx(G) := supy Bk(G, V).

(This is finite as Bx(G, V) < kB(G, V) while (G, V) < |G| by
Noether's classical result. )



Reduction lemma for normal subgroups

Theorem (Delorme-Ordaz-Quiroz)
For any abelian groups B < A:

Dk(A) < Dp,(B)(A/B)

Theorem (Cz-D)
For any normal subgroup N < G:

Bk(G, V) < Bac/n (N, V)



Proof.

Let F[V] = F[xi,...,x,] and F[V]N = F[f1, ..., f;].

Obviously F[V]"N is a G/N-module and F[V]¢ = (F[V]V)¢/N.
This means that any g € F[V]® can be written as

g(X]_, ...,Xn) - p(f17 teey fr)

for some G/N-invariant polynomial p. Let g be homogeneous of
degree deg(g) > [s(N) for some s. This enforces deg(p) > s.
Now set s = Bx(G/N). Then p is a sum of k + 1-fold products
of non-constant G/N-invariants, whence g € (F[V]¢)k+1.
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Reduction lemma for any subgroups H < G

Theorem (Cz-D)

Bi(G, V) < Buie:H(H, V)
provided that one of the following conditions holds:
» char(F) = 0 or char(F) > [G : H]
» H< G and char(F) does not divide [G : H]
» char(F) does not divide |G|

Open problem: the "baby Noether gap”

It is believed that in fact the above inequality holds whenever
char(F) does not divide [G : H]



Lower bounds

For abelian groups B < A it is trivial that D,(A) > D«(B).
B. Schmid has already proved for any subgroup H < G that:

B(G,Ind& V) > B(H, V)

A strenghtened version of her proof yields the following:

Theorem
Let N < G such that G/N is abelian. Let VV be an N-module and
U a G-module on which N acts trivialy. Then for any r,s > 1

Bris—1(G,Ind§V @ U) > B,(N, V) + Ds(G/N, U) — 1

Open problem
Can we lift the restriction that G/N is abelian? How far?



Lower bound for direct products

Theorem (Halter-Koch)

For any abelian groups A, B we have:
Drts—1(Ax B) > D,(A)+Ds(B) — 1
Theorem (Cz-D)
Let V be a G-module and U an H-module. Then for any r;s > 1

Bris—1(G x H, V@ U) = B,(G, V) + Bs(H, U) — 1



The main idea for the case r = s = 1 is the following:

» denote by d(A) the maximal length of a zero-sum free
sequence over A; it is easily seen that d(A) = D(A) — 1

» let S and T be a zero-sum free sequence over A and B of
length d(A) and d(B), respectively

» ST is obviously a zero-sum free sequences over A X B,
whence d(A x B) > d(A) +d(B)

How to generalize this argument for non-abelian groups?



The top degree of coinvariants

The analogue of a zero-sum free sequence for a non-abelian group
is the notion of a coinvariant, i.e. an element of the factor ring
F[Vlg := F[VI/FIVISFIVI.

Observation
For any abelian group A we have:
Di(G) = di(G) +1
Theorem (Cz-K)
If V is a G-module such that 5x(G, V) = Bx(G) then

Br(FIVI®) = Bk(FIV]. FIV]) + 1

where B (F[V], F[V]®) gives (for k = 1) the top degree of the
ring of coinvariants.



The growth rate of S4x(G, V) as a function of k
We started from an easy observation that for any ring R

Bs(R)  Be(R)

0<
S t

foranys>t>1

Hence limy_, Bk(R)/k exists! What is its value?

Theorem (Freeze-W. Schmid)
For any abelian group A there are integers ko(A), Do(A) such that

Dk(A) = kexp(A) + Do(A) for any k > ko(A)
Theorem (quasi-linearity of x(R))
There are some non-negative integers ko(R), So(R) such that

Bk(R) = ka(R) + Bo(R) for any k > ko(R)



Some cases where o(G) is known

Definition

Let o(R) be the smallest d € N such that there are some elements
fi,...,fy € R of degree at most d whose common zero locus is {0}
— or equivalently such that R is a finite module over F[fi, ..., f].

Previously o(G) was studied only for linearily reductive groups.

Theorem
For an abelian group A we have o(A) = exp(A).

Theorem
For G = A x_1 Z> we have 0(G) = exp(A).

Theorem
For any primes p, q such that q | p—1 we have o(Z, x Zg) = p.

This later holds also if the characteristic of the base field F equals
q, as Kohls and Elmers showed.



Properties of o(G, V) in the non-modular case

Theorem (1)
(G, VL@ .. Vy) = r}ﬁ?a(c, Vi)
Theorem (2)
o(G,V) < o(G/N)o(N,V)  ifN<G
Theorem (3)
o(H, V)< o(G,V)<[G:Hlo(H,V) ifH<G

Kohls and Elmers extended the scope of this results.



A general upper bound on ¢(G)

Theorem (Cz-D)

Let G be a non-cyclic group and q the smallest prime divisor of its
order. Then

o(G) < (17|G\ (1)

Open problem
Classify the groups with 3(G) > %|G|! (For g =2 it's done.)

Theorem (Kohls-Elmers)

Suppose the base field has caracteristic p and P is the Sylow
p-subgroup of G. If G is p-nilpotent and P is not normal in G
then (1) remains true.



Generalizing results on "short” zero-sum sequences

Definition
For any ring R let n(R) denote the smallest degree dj such that
for any d > dp we have Ry C R<,(r)R.

A straightforward induction argument gives
Bk(R) < (k= 1)a(R) +n(R)

For abelian groups H < G there is a powerful result which
combines in a sense the above fact with the reduction lemmata:

di(G) < di(H) exp(G/H)+max{d(G/H),n(G/H)—exp(G/H)—-1}

This also has a generalization in the framework of the invariant
theory of non-abelian groups.



The inductive method and the " contractions”

» for a subgroup B < A of an abelian group A consider the
natural epimorphism ¢ : A — A/B

» for a sequence S over A take a factorization S = 595;....5;
such that ¢(S;) is a zero-sum sequence over A/B for all i > 1

» investigate the " contracted” sequence (¢(S1),....,0(5)) as a
sequence over B (here o(S;) denotes the sum of a sequence)

This allows to derive information on the zero-sum sequences over
A from previous knowledge on the zero-sum sequences over B

We extended this method to a class of non-abelian groups, namely
those which have a cyclic subgoup of index 2



What else could be generalized to a non-abelian setting?

v

the definition of s(A) and related results, like the
Erdos-Ginzburg-Ziv theorem

v

the weighted Davenport constant

v

the small and the large Davenport constant

v

etc. etc.

Thank you for your attention!



