

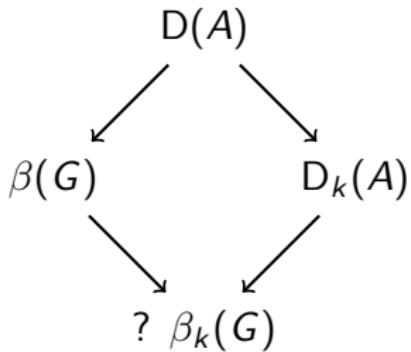
A new connection between additive number theory and invariant theory

Kálmán S. Cziszter
based on joint work with Mátyás Domokos

Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest, Hungary

September 22, 2014

The generalized Noether number



Definition

$\beta_k(R)$ for a graded ring R is the greatest d such that $R_d \not\subseteq R_+^{k+1}$.

We write $\beta_k(G, V) := \beta_k(F[V]^G)$ and $\beta_k(G) := \sup_V \beta_k(G, V)$.

(This is finite as $\beta_k(G, V) \leq k\beta(G, V)$ while $\beta(G, V) \leq |G|$ by Noether's classical result.)

Reduction lemma for normal subgroups

Theorem (Delorme-Ordaz-Quiroz)

For any abelian groups $B \leq A$:

$$D_k(A) \leq D_{D_k(B)}(A/B)$$

Theorem (Cz-D)

For any normal subgroup $N \triangleleft G$:

$$\beta_k(G, V) \leq \beta_{\beta_k(G/N)}(N, V)$$

Proof.

Let $F[V] = F[x_1, \dots, x_n]$ and $F[V]^N = F[f_1, \dots, f_r]$.

Obviously $F[V]^N$ is a G/N -module and $F[V]^G = (F[V]^N)^{G/N}$.

This means that any $g \in F[V]^G$ can be written as

$$g(x_1, \dots, x_n) = p(f_1, \dots, f_r)$$

for some G/N -invariant polynomial p . Let g be homogeneous of degree $\deg(g) > \beta_s(N)$ for some s . This enforces $\deg(p) > s$.

Now set $s = \beta_k(G/N)$. Then p is a sum of $k + 1$ -fold products of non-constant G/N -invariants, whence $g \in (F[V]_+^G)^{k+1}$. □

Reduction lemma for any subgroups $H \leq G$

Theorem (Cz-D)

$$\beta_k(G, V) \leq \beta_{k[G:H]}(H, V)$$

provided that one of the following conditions holds:

- ▶ $\text{char}(F) = 0$ or $\text{char}(F) > [G : H]$
- ▶ $H \triangleleft G$ and $\text{char}(F)$ does not divide $[G : H]$
- ▶ $\text{char}(F)$ does not divide $|G|$

Open problem: the "baby Noether gap"

It is believed that in fact the above inequality holds whenever $\text{char}(F)$ does not divide $[G : H]$

Lower bounds

For abelian groups $B \leq A$ it is trivial that $D_k(A) \geq D_k(B)$.

B. Schmid has already proved for any subgroup $H \leq G$ that:

$$\beta(G, \text{Ind}_H^G V) \geq \beta(H, V)$$

A strengthened version of her proof yields the following:

Theorem

Let $N \triangleleft G$ such that G/N is abelian. Let V be an N -module and U a G -module on which N acts trivially. Then for any $r, s \geq 1$

$$\beta_{r+s-1}(G, \text{Ind}_N^G V \oplus U) \geq \beta_r(N, V) + D_s(G/N, U) - 1$$

Open problem

Can we lift the restriction that G/N is abelian? How far?

Lower bound for direct products

Theorem (Halter-Koch)

For any abelian groups A, B we have:

$$D_{r+s-1}(A \times B) \geq D_r(A) + D_s(B) - 1$$

Theorem (Cz-D)

Let V be a G -module and U an H -module. Then for any $r, s \geq 1$

$$\beta_{r+s-1}(G \times H, V \oplus U) \geq \beta_r(G, V) + \beta_s(H, U) - 1$$

The main idea for the case $r = s = 1$ is the following:

- ▶ denote by $d(A)$ the maximal length of a zero-sum free sequence over A ; it is easily seen that $d(A) = D(A) - 1$
- ▶ let S and T be a zero-sum free sequence over A and B of length $d(A)$ and $d(B)$, respectively
- ▶ ST is obviously a zero-sum free sequences over $A \times B$, whence $d(A \times B) \geq d(A) + d(B)$

How to generalize this argument for non-abelian groups?

The top degree of coinvariants

The analogue of a zero-sum free sequence for a non-abelian group is the notion of a *coinvariant*, i.e. an element of the factor ring $F[V]_G := F[V]/F[V]_+^G F[V]$.

Observation

For any abelian group A we have:

$$D_k(G) = d_k(G) + 1$$

Theorem (Cz-K)

If V is a G -module such that $\beta_k(G, V) = \beta_k(G)$ then

$$\beta_k(F[V]^G) = \beta_k(F[V], F[V]^G) + 1$$

where $\beta_k(F[V], F[V]^G)$ gives (for $k = 1$) the top degree of the ring of coinvariants.

The growth rate of $\beta_k(G, V)$ as a function of k

We started from an easy observation that for any ring R

$$0 \leq \frac{\beta_s(R)}{s} \leq \frac{\beta_t(R)}{t} \quad \text{for any } s \geq t \geq 1$$

Hence $\lim_{k \rightarrow \infty} \beta_k(R)/k$ exists! What is its value?

Theorem (Freeze-W. Schmid)

For any abelian group A there are integers $k_0(A)$, $D_0(A)$ such that

$$D_k(A) = k \exp(A) + D_0(A) \quad \text{for any } k > k_0(A)$$

Theorem (quasi-linearity of $\beta_k(R)$)

There are some non-negative integers $k_0(R)$, $\beta_0(R)$ such that

$$\beta_k(R) = k \sigma(R) + \beta_0(R) \quad \text{for any } k > k_0(R)$$

Some cases where $\sigma(G)$ is known

Definition

Let $\sigma(R)$ be the smallest $d \in \mathbb{N}$ such that there are some elements $f_1, \dots, f_r \in R$ of degree at most d whose common zero locus is $\{0\}$ — or equivalently such that R is a finite module over $F[f_1, \dots, f_r]$.

Previously $\sigma(G)$ was studied only for linearly reductive groups.

Theorem

For an abelian group A we have $\sigma(A) = \exp(A)$.

Theorem

For $G = A \rtimes_{-1} \mathbb{Z}_2$ we have $\sigma(G) = \exp(A)$.

Theorem

For any primes p, q such that $q \mid p - 1$ we have $\sigma(\mathbb{Z}_p \rtimes \mathbb{Z}_q) = p$.

This later holds also if the characteristic of the base field F equals q , as Kohls and Elmers showed.

Properties of $\sigma(G, V)$ in the non-modular case

Theorem (1)

$$\sigma(G, V_1 \oplus \dots \oplus V_n) = \max_{i=1}^n \sigma(G, V_i)$$

Theorem (2)

$$\sigma(G, V) \leq \sigma(G/N)\sigma(N, V) \quad \text{if } N \triangleleft G$$

Theorem (3)

$$\sigma(H, V) \leq \sigma(G, V) \leq [G : H]\sigma(H, V) \quad \text{if } H \leq G$$

Kohls and Elmers extended the scope of this results.

A general upper bound on $\sigma(G)$

Theorem (Cz-D)

Let G be a non-cyclic group and q the smallest prime divisor of its order. Then

$$\sigma(G) \leq \frac{1}{q}|G| \tag{1}$$

Open problem

Classify the groups with $\beta(G) \geq \frac{1}{q}|G|!$ (For $q = 2$ it's done.)

Theorem (Kohls-Elmers)

Suppose the base field has characteristic p and P is the Sylow p -subgroup of G . If G is p -nilpotent and P is not normal in G then (1) remains true.

Generalizing results on "short" zero-sum sequences

Definition

For any ring R let $\eta(R)$ denote the smallest degree d_0 such that for any $d > d_0$ we have $R_d \subseteq R_{\leq \sigma(R)} R$.

A straightforward induction argument gives

$$\beta_k(R) \leq (k-1)\sigma(R) + \eta(R)$$

For abelian groups $H \leq G$ there is a powerful result which combines in a sense the above fact with the reduction lemmata:

$$d_k(G) \leq d_k(H) \exp(G/H) + \max\{d(G/H), \eta(G/H) - \exp(G/H) - 1\}$$

This also has a generalization in the framework of the invariant theory of non-abelian groups.

The inductive method and the "contractions"

- ▶ for a subgroup $B \leq A$ of an abelian group A consider the natural epimorphism $\phi : A \rightarrow A/B$
- ▶ for a sequence S over A take a factorization $S = S_0 S_1 \dots S_l$ such that $\phi(S_i)$ is a zero-sum sequence over A/B for all $i \geq 1$
- ▶ investigate the "contracted" sequence $(\sigma(S_1), \dots, \sigma(S_l))$ as a sequence over B (here $\sigma(S_i)$ denotes the sum of a sequence)

This allows to derive information on the zero-sum sequences over A from previous knowledge on the zero-sum sequences over B

We extended this method to a class of non-abelian groups, namely those which have a cyclic subgroup of index 2

What else could be generalized to a non-abelian setting?

- ▶ the definition of $s(A)$ and related results, like the Erdos-Ginzburg-Ziv theorem
- ▶ the weighted Davenport constant
- ▶ the small and the large Davenport constant
- ▶ etc. etc.

Thank you for your attention!