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1. Preliminaries

Definition 1.1

A near-ring is a triple (N, +, -) where

@ (N, +) is a (not necessarily Abelian) group;
@ (N, ) is a semigroup;
Q@ (x+y)z=xz+yzforall x,y,z€ N.

A near-ring N is zero-symmetric if n0 = 0 for all n € N.
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@ (N, +) is a (not necessarily Abelian) group;
@ (N, ) is a semigroup;
Q@ (x+y)z=xz+yzforall x,y,z€ N.

A near-ring N is zero-symmetric if n0 = 0 for all n € N.

In the sequel, N is a zero-symmetric near-ring.
Homomorphisms, isomorphisms, left, right and two-sided ideals for
near-rings are defined in a natural way.

Definition 1.2

A subgroup A of N is left (resp. right) invariant if NA C A (resp.
AN C A). If Ais both left and right invariant, it is called an invariant
subgroup of N.
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1. Preliminaries

In this talk, a one-sided ideal A of a ring R will be called prime if a, b € R,
aRb C Aimpliesa€ Aor b € A.
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Note that equiprime =—> 3-prime.
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1. Preliminaries

Clearly, Nr(G) € Mgr(G). The reverse inclusion does not hold in general
as the following example shows.
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Example 1.6

Let R and IR? have their usual topologies. Let

Fla.b) = { (—a,0)if b#£0

(a,0) otherwise
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1. Preliminaries

Clearly, Nr(G) € Mgr(G). The reverse inclusion does not hold in general
as the following example shows.

Example 1.6

Let R and IR? have their usual topologies. Let

(—a,0)if b#0
(a,0) otherwise

f(a b) = {

Then clearly, f € Mr(R?). But f is not continuous at (1,0), so
f ¢ Nr(RR?).
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2. Primeness in Near-rings of Homogeneous Self-maps

Geoff Booth and Kabelo Mogae (Institute) On Primeness in Near-rings of Homogeneous October 25, 2014 6/ 14



2. Primeness in Near-rings of Homogeneous Self-maps

In this Section, R is a topological ring with unity. We will consider
Ngr(R?).

Geoff Booth and Kabelo Mogae (Institute) On Primeness in Near-rings of Homogeneous October 25, 2014 6/ 14



2. Primeness in Near-rings of Homogeneous Self-maps

In this Section, R is a topological ring with unity. We will consider
Ngr(R?).
An important class of homogeneous functions in this context are the

. . aj; a ..
matrix functions of the form |“1t 12 A €ER1<0j<2
dg1 a2

Geoff Booth and Kabelo Mogae (Institute) On Primeness in Near-rings of Homogeneous October 25, 2014 6/ 14



2. Primeness in Near-rings of Homogeneous Self-maps

In this Section, R is a topological ring with unity. We will consider
Ngr(R?).
An important class of homogeneous functions in this context are the

. . aj; a ..
matrix functions of the form |“1t 12 A €ER1<0j<2
dg1 a2

Their action is defined in the natural way, i.e.
a1 a2 |n| _ |auin +aw2n
azy ax| |r a1 +axnn

forall n,n € R.

Geoff Booth and Kabelo Mogae (Institute) On Primeness in Near-rings of Homogeneous October 25, 2014 6/ 14



2. Primeness in Near-rings of Homogeneous Self-maps

In this Section, R is a topological ring with unity. We will consider
Ngr(R?).
An important class of homogeneous functions in this context are the

. . aj; a ..
matrix functions of the form |“1t 12 A €ER1<0j<2
dg1 a2

Their action is defined in the natural way, i.e.
ain anz| (n| _ |aun + appn
azy ax| |r a1 +axnn
forall n,n € R.

Clearly, matrix functions are continuous and homogeneous.

Geoff Booth and Kabelo Mogae (Institute) On Primeness in Near-rings of Homogeneous October 25, 2014 6/ 14



2. Primeness in Near-rings of Homogeneous Self-maps

In this Section, R is a topological ring with unity. We will consider
Ngr(R?).
An important class of homogeneous functions in this context are the

. . aj; a ..
matrix functions of the form |“1t 12 A €ER1<0j<2
dg1 a2

Their action is defined in the natural way, i.e.
ain anz| (n| _ |aun + appn
azy ax| |r a1 +axnn
forall n,n € R.

Clearly, matrix functions are continuous and homogeneous.

Geoff Booth and Kabelo Mogae (Institute) On Primeness in Near-rings of Homogeneous October 25, 2014 6/ 14



2. Primeness in Near-rings of Homogeneous Self-maps

Theorem 2.1

The following statements are equivalent:

Q R is a prime ring.

@ Ng(R?) is an equiprime near-ring.

© Ng(R?) is a 3-prime near-ring.
Veldsman (1990), Mogae (2013)
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v

Definition 2.2

Let A and B be subsets of R and Ng(R?), respectively. Then

AT = (A:R*)y={feN:f(R*)C A} and

5. = {xer:[5 o] et
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2. Primeness in Near-rings of Homogeneous Self-maps

Theorem 2.3

Let R be a topological ring, and let P be a right ideal of R. Then the
following are equivalent:

Q P is a prime right ideal of R.
Q@ P is an equiprime right ideal of N.
© P is a 3-prime right ideal of N.

Geoff Booth and Kabelo Mogae (Institute) On Primeness in Near-rings of Homogeneous

October 25, 2014 8/ 14



2. Primeness in Near-rings of Homogeneous Self-maps

Theorem 2.3

Let R be a topological ring, and let P be a right ideal of R. Then the
following are equivalent:

Q P is a prime right ideal of R.
Q@ P is an equiprime right ideal of N.
© P is a 3-prime right ideal of N.

v

e [f] e o thna[t 9 = [s[]) 2] o
+lo 2] = [o([])]

Maxson and van Wyk (1991)
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2. Primeness in Near-rings of Homogeneous Self-maps

Let P be a 3-prime invariant subgroup of N, and let a € N. Then
a(M) € (PL)? for all m € R? if and only if a € P.

Theorem 2.6
Let P be a 3-prime right ideal of N. Then Py is a prime right ideal of R.

Let P be a 3-prime invariant subgroup of N. Then (Py)" = P.

Corollary 2.8

P is a 3-prime ideal of N if and only if it is an equiprime ideal of N.
Hence P3(N) = Pe(N).
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2. Primeness in Near-rings of Homogeneous Self-maps

Problem 2.9

It is known that the notions of 3-prime and equiprime do not in general
coincide for zero-symmetric near-rings.
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Problem 2.9

It is known that the notions of 3-prime and equiprime do not in general
coincide for zero-symmetric near-rings. However it is an open question
whether they coincide for near-rings with unity.

Theorem 2.10

The mapping P — P™ is an injection from the set of prime ideals of R to
the set of equiprime right ideals of Ng(R?).

| \

A,
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Corollary 2.11

P(R)" C Pe(Nr(R?)).

Let P be a prime ideal of R. Then (P*), = P.
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3. When R is a Commutative PIR

In this Section, R is a commutative principal ideal ring. Following
Hungerford (1974) such a ring is the direct product of a family of rings
{R; : i € I}, where each R; is either a principal ideal domain (PID) or a
special PIR. A PIR is special if it has a unique proper prime ideal which is
nonzero and nilpotent.
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Let R be a ring with unity, and suppose that R is a direct product of the
rings R;, i € . Then Ng(R?) is isomorphic to @ Ng.(R?), where each R;
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is endowed with the quotient topology with respect to the i-th projection
map.
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3. When R is a Commutative PIR

Let R be a commutative PIR. Then the mapping P — P defines a
one-to-one correspondence between the set of prime ideals of R and the
set of equiprime invariant subgroups of Ng(R?).
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3. When R is a Commutative PIR

Theorem 3.3

Let R be a commutative PIR. Then the mapping P — P defines a
one-to-one correspondence between the set of prime ideals of R and the
set of equiprime invariant subgroups of Ng(R?).

| \

Corollary 3.4

Let R be a special PIR. Then P.(Ng(R?)) = P*, where P is the unique
nonzero proper prime ideal of R.

\
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Theorem 3.3

Let R be a commutative PIR. Then the mapping P — P defines a
one-to-one correspondence between the set of prime ideals of R and the
set of equiprime invariant subgroups of Ng(R?).

| A

Corollary 3.4

Let R be a special PIR. Then P.(Ng(R?)) = P*, where P is the unique
nonzero proper prime ideal of R.

\

Let R be a commutative PIR. Then P.(Nr(R?)) = ® P;, where P; =0
i€l
if R; is a PID and P; = Q,-+ , where Q; is the unique nonzero proper prime

ideal of R; in the case that R; is a special PIR.
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3. When R is a Commutative PIR

Corollary 3.6
Let R be a commutative PIR. Then P(R)™ = P.(Ng(R?)).
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3. When R is a Commutative PIR

Corollary 3.6
Let R be a commutative PIR. Then P(R)™ = P.(Ng(R?)).

Let R=1R x Z4. Then
Pe(Nr(R?)) = (P(R))" = (P(R))" x (P(Z4))" = {0}* x {0,2}* =
{a € Ng(R?):a(Rx {0}) =0 and a({0} x Z3) € {0,2}?}
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4. Conclusion

THANK YOU!
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