

On Primeness in Near-rings of Homogeneous Functions

Geoff Booth and Kabelo Mogae

Nelson Mandela Metropolitan University
Port Elizabeth, South Africa
and
University of Botswana
Gaborone, Botswana

October 25, 2014

1. Preliminaries

Definition 1.1

A near-ring is a triple $(N, +, \cdot)$ where

- ① $(N, +)$ is a (not necessarily Abelian) group;
- ② (N, \cdot) is a semigroup;
- ③ $(x + y)z = xz + yz$ for all $x, y, z \in N$.

A near-ring N is zero-symmetric if $n0 = 0$ for all $n \in N$.

1. Preliminaries

Definition 1.1

A near-ring is a triple $(N, +, \cdot)$ where

- ① $(N, +)$ is a (not necessarily Abelian) group;
- ② (N, \cdot) is a semigroup;
- ③ $(x + y)z = xz + yz$ for all $x, y, z \in N$.

A near-ring N is zero-symmetric if $n0 = 0$ for all $n \in N$.

In the sequel, N is a zero-symmetric near-ring.

1. Preliminaries

Definition 1.1

A near-ring is a triple $(N, +, \cdot)$ where

- ① $(N, +)$ is a (not necessarily Abelian) group;
- ② (N, \cdot) is a semigroup;
- ③ $(x + y)z = xz + yz$ for all $x, y, z \in N$.

A near-ring N is zero-symmetric if $n0 = 0$ for all $n \in N$.

In the sequel, N is a zero-symmetric near-ring.

Homomorphisms, isomorphisms, left, right and two-sided ideals for near-rings are defined in a natural way.

1. Preliminaries

Definition 1.1

A near-ring is a triple $(N, +, \cdot)$ where

- ① $(N, +)$ is a (not necessarily Abelian) group;
- ② (N, \cdot) is a semigroup;
- ③ $(x + y)z = xz + yz$ for all $x, y, z \in N$.

A near-ring N is zero-symmetric if $n0 = 0$ for all $n \in N$.

In the sequel, N is a zero-symmetric near-ring.

Homomorphisms, isomorphisms, left, right and two-sided ideals for near-rings are defined in a natural way.

Definition 1.2

A subgroup A of N is left (resp. right) invariant if $NA \subseteq A$ (resp. $AN \subseteq A$). If A is both left and right invariant, it is called an invariant subgroup of N .

1. Preliminaries

1. Preliminaries

In this talk, a one-sided ideal A of a ring R will be called prime if $a, b \in R$, $aRb \subseteq A$ implies $a \in A$ or $b \in A$.

1. Preliminaries

In this talk, a one-sided ideal A of a ring R will be called prime if $a, b \in R$, $aRb \subseteq A$ implies $a \in A$ or $b \in A$. Note that, in the case that A is a two-sided ideal, this coincides with the usual definition of primeness.

1. Preliminaries

In this talk, a one-sided ideal A of a ring R will be called prime if $a, b \in R$, $aRb \subseteq A$ implies $a \in A$ or $b \in A$. Note that, in the case that A is a two-sided ideal, this coincides with the usual definition of primeness. A number of notions for primeness exist for near-rings. We will be concerned with two.

1. Preliminaries

In this talk, a one-sided ideal A of a ring R will be called prime if $a, b \in R$, $aRb \subseteq A$ implies $a \in A$ or $b \in A$. Note that, in the case that A is a two-sided ideal, this coincides with the usual definition of primeness. A number of notions for primeness exist for near-rings. We will be concerned with two.

Definition 1.3

A subgroup A of N is called

- 3-prime if $a, b \in N$, $aNb \subseteq A$ implies $a \in A$ or $b \in A$ (Groenewald, 1991);

1. Preliminaries

In this talk, a one-sided ideal A of a ring R will be called prime if $a, b \in R$, $aRb \subseteq A$ implies $a \in A$ or $b \in A$. Note that, in the case that A is a two-sided ideal, this coincides with the usual definition of primeness. A number of notions for primeness exist for near-rings. We will be concerned with two.

Definition 1.3

A subgroup A of N is called

- 3-prime if $a, b \in N$, $aNb \subseteq A$ implies $a \in A$ or $b \in A$ (Groenewald, 1991);
- equiprime (e-prime) if $a, x, y \in N$, $anx - any \in A$ for all $n \in N$ implies $a \in A$ or $x - y \in A$ (Booth, Groenewald and Veldsman, 1990).

1. Preliminaries

In this talk, a one-sided ideal A of a ring R will be called prime if $a, b \in R$, $aRb \subseteq A$ implies $a \in A$ or $b \in A$. Note that, in the case that A is a two-sided ideal, this coincides with the usual definition of primeness. A number of notions for primeness exist for near-rings. We will be concerned with two.

Definition 1.3

A subgroup A of N is called

- 3-prime if $a, b \in N$, $aNb \subseteq A$ implies $a \in A$ or $b \in A$ (Groenewald, 1991);
- equiprime (e-prime) if $a, x, y \in N$, $anx - any \in A$ for all $n \in N$ implies $a \in A$ or $x - y \in A$ (Booth, Groenewald and Veldsman, 1990).
- N is a 3-prime (resp. equiprime) near-ring if $\{0\}$ is a 3-prime (resp. equiprime) ideal of N .

1. Preliminaries

In this talk, a one-sided ideal A of a ring R will be called prime if $a, b \in R$, $aRb \subseteq A$ implies $a \in A$ or $b \in A$. Note that, in the case that A is a two-sided ideal, this coincides with the usual definition of primeness. A number of notions for primeness exist for near-rings. We will be concerned with two.

Definition 1.3

A subgroup A of N is called

- 3-prime if $a, b \in N$, $aNb \subseteq A$ implies $a \in A$ or $b \in A$ (Groenewald, 1991);
- equiprime (e-prime) if $a, x, y \in N$, $anx - any \in A$ for all $n \in N$ implies $a \in A$ or $x - y \in A$ (Booth, Groenewald and Veldsman, 1990).
- N is a 3-prime (resp. equiprime) near-ring if $\{0\}$ is a 3-prime (resp. equiprime) ideal of N .

1. Preliminaries

In this talk, a one-sided ideal A of a ring R will be called prime if $a, b \in R$, $aRb \subseteq A$ implies $a \in A$ or $b \in A$. Note that, in the case that A is a two-sided ideal, this coincides with the usual definition of primeness. A number of notions for primeness exist for near-rings. We will be concerned with two.

Definition 1.3

A subgroup A of N is called

- 3-prime if $a, b \in N$, $aNb \subseteq A$ implies $a \in A$ or $b \in A$ (Groenewald, 1991);
- equiprime (e-prime) if $a, x, y \in N$, $anx - any \in A$ for all $n \in N$ implies $a \in A$ or $x - y \in A$ (Booth, Groenewald and Veldsman, 1990).
- N is a 3-prime (resp. equiprime) near-ring if $\{0\}$ is a 3-prime (resp. equiprime) ideal of N .

1. Preliminaries

Note that equiprime \implies 3-prime.

1. Preliminaries

Note that equiprime \implies 3-prime.

Definition 1.4

The 3-prime radical, $\mathcal{P}_3(N)$ (resp. equiprime radical $\mathcal{P}_e(N)$), is the intersection of the 3-prime (resp. equiprime) ideals of N .

1. Preliminaries

Note that equiprime \implies 3-prime.

Definition 1.4

The 3-prime radical, $\mathcal{P}_3(N)$ (resp. equiprime radical $\mathcal{P}_e(N)$), is the intersection of the 3-prime (resp. equiprime) ideals of N .

Definition 1.5

Let R be a ring with unity, and let G be a unital right R -module. A function $f : G \rightarrow G$ is called homogeneous if $f(gr) = f(g)r$ for all $g \in G$ and $r \in R$.

1. Preliminaries

Note that equiprime \implies 3-prime.

Definition 1.4

The 3-prime radical, $\mathcal{P}_3(N)$ (resp. equiprime radical $\mathcal{P}_e(N)$), is the intersection of the 3-prime (resp. equiprime) ideals of N .

Definition 1.5

Let R be a ring with unity, and let G be a unital right R -module. A function $f : G \rightarrow G$ is called homogeneous if $f(gr) = f(g)r$ for all $g \in G$ and $r \in R$.

The set of all homogeneous self-maps of G will be denoted $M_R(G)$.

1. Preliminaries

Note that equiprime \implies 3-prime.

Definition 1.4

The 3-prime radical, $\mathcal{P}_3(N)$ (resp. equiprime radical $\mathcal{P}_e(N)$), is the intersection of the 3-prime (resp. equiprime) ideals of N .

Definition 1.5

Let R be a ring with unity, and let G be a unital right R -module. A function $f : G \rightarrow G$ is called homogeneous if $f(gr) = f(g)r$ for all $g \in G$ and $r \in R$.

The set of all homogeneous self-maps of G will be denoted $M_R(G)$. If R is a topological ring and G is a topological unital R -module, the set of all continuous homogeneous self-maps of G will be denoted $N_R(G)$.

1. Preliminaries

Note that equiprime \implies 3-prime.

Definition 1.4

The 3-prime radical, $\mathcal{P}_3(N)$ (resp. equiprime radical $\mathcal{P}_e(N)$), is the intersection of the 3-prime (resp. equiprime) ideals of N .

Definition 1.5

Let R be a ring with unity, and let G be a unital right R -module. A function $f : G \rightarrow G$ is called homogeneous if $f(gr) = f(g)r$ for all $g \in G$ and $r \in R$.

The set of all homogeneous self-maps of G will be denoted $M_R(G)$.

If R is a topological ring and G is a topological unital R -module, the set of all continuous homogeneous self-maps of G will be denoted $N_R(G)$.

Clearly, $M_R(G)$ and $N_R(G)$ are zero-symmetric near-rings with respect to pointwise addition and composition of functions.

1. Preliminaries

Note that equiprime \implies 3-prime.

Definition 1.4

The 3-prime radical, $\mathcal{P}_3(N)$ (resp. equiprime radical $\mathcal{P}_e(N)$), is the intersection of the 3-prime (resp. equiprime) ideals of N .

Definition 1.5

Let R be a ring with unity, and let G be a unital right R -module. A function $f : G \rightarrow G$ is called homogeneous if $f(gr) = f(g)r$ for all $g \in G$ and $r \in R$.

The set of all homogeneous self-maps of G will be denoted $M_R(G)$.

If R is a topological ring and G is a topological unital R -module, the set of all continuous homogeneous self-maps of G will be denoted $N_R(G)$.

Clearly, $M_R(G)$ and $N_R(G)$ are zero-symmetric near-rings with respect to pointwise addition and composition of functions.

1. Preliminaries

Clearly, $N_R(G) \subseteq M_R(G)$. The reverse inclusion does not hold in general as the following example shows.

1. Preliminaries

Clearly, $N_R(G) \subseteq M_R(G)$. The reverse inclusion does not hold in general as the following example shows.

Example 1.6

Let \mathbb{R} and \mathbb{R}^2 have their usual topologies. Let

$$f(a, b) = \begin{cases} (-a, 0) & \text{if } b \neq 0 \\ (a, 0) & \text{otherwise} \end{cases}.$$

1. Preliminaries

Clearly, $N_R(G) \subseteq M_R(G)$. The reverse inclusion does not hold in general as the following example shows.

Example 1.6

Let \mathbb{R} and \mathbb{R}^2 have their usual topologies. Let

$$f(a, b) = \begin{cases} (-a, 0) & \text{if } b \neq 0 \\ (a, 0) & \text{otherwise} \end{cases}.$$

Then clearly, $f \in M_{\mathbb{R}}(\mathbb{R}^2)$.

1. Preliminaries

Clearly, $N_R(G) \subseteq M_R(G)$. The reverse inclusion does not hold in general as the following example shows.

Example 1.6

Let \mathbb{R} and \mathbb{R}^2 have their usual topologies. Let

$$f(a, b) = \begin{cases} (-a, 0) & \text{if } b \neq 0 \\ (a, 0) & \text{otherwise} \end{cases}.$$

Then clearly, $f \in M_{\mathbb{R}}(\mathbb{R}^2)$. But f is not continuous at $(1, 0)$, so $f \notin N_{\mathbb{R}}(\mathbb{R}^2)$.

2. Primeness in Near-rings of Homogeneous Self-maps

2. Primeness in Near-rings of Homogeneous Self-maps

In this Section, R is a topological ring with unity. We will consider $N_R(R^2)$.

2. Primeness in Near-rings of Homogeneous Self-maps

In this Section, R is a topological ring with unity. We will consider $N_R(R^2)$.

An important class of homogeneous functions in this context are the matrix functions of the form $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, $a_{ij} \in R$, $1 \leq i, j \leq 2$.

2. Primeness in Near-rings of Homogeneous Self-maps

In this Section, R is a topological ring with unity. We will consider $N_R(R^2)$.

An important class of homogeneous functions in this context are the matrix functions of the form $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, $a_{ij} \in R$, $1 \leq i, j \leq 2$.

Their action is defined in the natural way, i.e.

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = \begin{bmatrix} a_{11}r_1 + a_{12}r_2 \\ a_{21}r_1 + a_{22}r_2 \end{bmatrix}$$

for all $r_1, r_2 \in R$.

2. Primeness in Near-rings of Homogeneous Self-maps

In this Section, R is a topological ring with unity. We will consider $N_R(R^2)$.

An important class of homogeneous functions in this context are the matrix functions of the form $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, $a_{ij} \in R$, $1 \leq i, j \leq 2$.

Their action is defined in the natural way, i.e.

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = \begin{bmatrix} a_{11}r_1 + a_{12}r_2 \\ a_{21}r_1 + a_{22}r_2 \end{bmatrix}$$

for all $r_1, r_2 \in R$.

Clearly, matrix functions are continuous and homogeneous.

2. Primeness in Near-rings of Homogeneous Self-maps

In this Section, R is a topological ring with unity. We will consider $N_R(R^2)$.

An important class of homogeneous functions in this context are the matrix functions of the form $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, $a_{ij} \in R$, $1 \leq i, j \leq 2$.

Their action is defined in the natural way, i.e.

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = \begin{bmatrix} a_{11}r_1 + a_{12}r_2 \\ a_{21}r_1 + a_{22}r_2 \end{bmatrix}$$

for all $r_1, r_2 \in R$.

Clearly, matrix functions are continuous and homogeneous.

2. Primeness in Near-rings of Homogeneous Self-maps

Theorem 2.1

The following statements are equivalent:

- ① R is a prime ring.
- ② $N_R(R^2)$ is an equiprime near-ring.
- ③ $N_R(R^2)$ is a 3-prime near-ring.

Veldsman (1990), Mogae (2013)

2. Primeness in Near-rings of Homogeneous Self-maps

Theorem 2.1

The following statements are equivalent:

- ① R is a prime ring.
- ② $N_R(R^2)$ is an equiprime near-ring.
- ③ $N_R(R^2)$ is a 3-prime near-ring.

Veldsman (1990), Mogae (2013)

Definition 2.2

Let A and B be subsets of R and $N_R(R^2)$, respectively. Then

$$A^+ = (A^2 : R^2)_N = \{f \in N : f(R^2) \subseteq A^2\} \text{ and}$$

$$B_+ = \left\{ x \in R : \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} \in B \right\}$$

2. Primeness in Near-rings of Homogeneous Self-maps

Theorem 2.3

Let R be a topological ring, and let P be a right ideal of R . Then the following are equivalent:

- ① P is a prime right ideal of R .
- ② P^+ is an equiprime right ideal of N .
- ③ P^+ is a 3-prime right ideal of N .

2. Primeness in Near-rings of Homogeneous Self-maps

Theorem 2.3

Let R be a topological ring, and let P be a right ideal of R . Then the following are equivalent:

- ① P is a prime right ideal of R .
- ② P^+ is an equiprime right ideal of N .
- ③ P^+ is a 3-prime right ideal of N .

Lemma 2.4

Let $\begin{bmatrix} u \\ v \end{bmatrix} \in R^2$ and let $a \in N$. Then $a \begin{bmatrix} u & 0 \\ v & 0 \end{bmatrix} = \begin{bmatrix} a \left(\begin{bmatrix} u \\ v \end{bmatrix} \right) & 0 \\ 0 & 0 \end{bmatrix}$ and

$$a \begin{bmatrix} 0 & u \\ 0 & v \end{bmatrix} = \begin{bmatrix} 0 & a \left(\begin{bmatrix} u \\ v \end{bmatrix} \right) \\ 0 & 0 \end{bmatrix}.$$

Maxson and van Wyk (1991)

2. Primeness in Near-rings of Homogeneous Self-maps

2. Primeness in Near-rings of Homogeneous Self-maps

Lemma 2.5

Let P be a 3-prime invariant subgroup of N , and let $a \in N$. Then

$a \begin{pmatrix} u \\ v \end{pmatrix} \in (P_+)^2$ for all $\begin{pmatrix} u \\ v \end{pmatrix} \in R^2$ if and only if $a \in P$.

2. Primeness in Near-rings of Homogeneous Self-maps

Lemma 2.5

Let P be a 3-prime invariant subgroup of N , and let $a \in N$. Then

$a \left(\begin{bmatrix} u \\ v \end{bmatrix} \right) \in (P_+)^2$ for all $\begin{bmatrix} u \\ v \end{bmatrix} \in R^2$ if and only if $a \in P$.

Theorem 2.6

Let P be a 3-prime right ideal of N . Then P_+ is a prime right ideal of R .

2. Primeness in Near-rings of Homogeneous Self-maps

Lemma 2.5

Let P be a 3-prime invariant subgroup of N , and let $a \in N$. Then

$a \left(\begin{bmatrix} u \\ v \end{bmatrix} \right) \in (P_+)^2$ for all $\begin{bmatrix} u \\ v \end{bmatrix} \in R^2$ if and only if $a \in P$.

Theorem 2.6

Let P be a 3-prime right ideal of N . Then P_+ is a prime right ideal of R .

Lemma 2.7

Let P be a 3-prime invariant subgroup of N . Then $(P_+)^+ = P$.

2. Primeness in Near-rings of Homogeneous Self-maps

Lemma 2.5

Let P be a 3-prime invariant subgroup of N , and let $a \in N$. Then

$a \left(\begin{bmatrix} u \\ v \end{bmatrix} \right) \in (P_+)^2$ for all $\begin{bmatrix} u \\ v \end{bmatrix} \in R^2$ if and only if $a \in P$.

Theorem 2.6

Let P be a 3-prime right ideal of N . Then P_+ is a prime right ideal of R .

Lemma 2.7

Let P be a 3-prime invariant subgroup of N . Then $(P_+)^+ = P$.

Corollary 2.8

P is a 3-prime ideal of N if and only if it is an equiprime ideal of N .

Hence $\mathcal{P}_3(N) = \mathcal{P}_e(N)$.

2. Primeness in Near-rings of Homogeneous Self-maps

2. Primeness in Near-rings of Homogeneous Self-maps

Problem 2.9

It is known that the notions of 3-prime and equiprime do not in general coincide for zero-symmetric near-rings.

2. Primeness in Near-rings of Homogeneous Self-maps

Problem 2.9

It is known that the notions of 3-prime and equiprime do not in general coincide for zero-symmetric near-rings. However it is an open question whether they coincide for near-rings with unity.

2. Primeness in Near-rings of Homogeneous Self-maps

Problem 2.9

It is known that the notions of 3-prime and equiprime do not in general coincide for zero-symmetric near-rings. However it is an open question whether they coincide for near-rings with unity.

Theorem 2.10

The mapping $P \rightarrow P^+$ is an injection from the set of prime ideals of R to the set of equiprime right ideals of $N_R(R^2)$.

2. Primeness in Near-rings of Homogeneous Self-maps

Problem 2.9

It is known that the notions of 3-prime and equiprime do not in general coincide for zero-symmetric near-rings. However it is an open question whether they coincide for near-rings with unity.

Theorem 2.10

The mapping $P \rightarrow P^+$ is an injection from the set of prime ideals of R to the set of equiprime right ideals of $N_R(R^2)$.

Corollary 2.11

$$\mathcal{P}(R)^+ \subseteq \mathcal{P}_e(N_R(R^2)).$$

2. Primeness in Near-rings of Homogeneous Self-maps

Problem 2.9

It is known that the notions of 3-prime and equiprime do not in general coincide for zero-symmetric near-rings. However it is an open question whether they coincide for near-rings with unity.

Theorem 2.10

The mapping $P \rightarrow P^+$ is an injection from the set of prime ideals of R to the set of equiprime right ideals of $N_R(R^2)$.

Corollary 2.11

$$\mathcal{P}(R)^+ \subseteq \mathcal{P}_e(N_R(R^2)).$$

Lemma 2.12

Let P be a prime ideal of R . Then $(P^+)_+ = P$.

3. When R is a Commutative PIR

3. When R is a Commutative PIR

In this Section, R is a commutative principal ideal ring.

3. When R is a Commutative PIR

In this Section, R is a commutative principal ideal ring. Following Hungerford (1974) such a ring is the direct product of a family of rings $\{R_i : i \in I\}$, where each R_i is either a principal ideal domain (PID) or a *special PIR*. A PIR is special if it has a unique proper prime ideal which is nonzero and nilpotent.

3. When R is a Commutative PIR

In this Section, R is a commutative principal ideal ring. Following Hungerford (1974) such a ring is the direct product of a family of rings $\{R_i : i \in I\}$, where each R_i is either a principal ideal domain (PID) or a *special PIR*. A PIR is special if it has a unique proper prime ideal which is nonzero and nilpotent.

Theorem 3.1

Let R be a ring with unity, and suppose that R is a direct product of the rings R_i , $i \in I$. Then $N_R(R^2)$ is isomorphic to $\bigotimes_{i \in I} N_{R_i}(R_i^2)$, where each R_i is endowed with the quotient topology with respect to the i -th projection map.

3. When R is a Commutative PIR

In this Section, R is a commutative principal ideal ring. Following Hungerford (1974) such a ring is the direct product of a family of rings $\{R_i : i \in I\}$, where each R_i is either a principal ideal domain (PID) or a *special PIR*. A PIR is special if it has a unique proper prime ideal which is nonzero and nilpotent.

Theorem 3.1

Let R be a ring with unity, and suppose that R is a direct product of the rings R_i , $i \in I$. Then $N_R(R^2)$ is isomorphic to $\bigotimes_{i \in I} N_{R_i}(R_i^2)$, where each R_i is endowed with the quotient topology with respect to the i -th projection map.

Corollary 3.2

$$\mathcal{P}_e(N_R(R^2)) = \bigotimes_{i \in I} \mathcal{P}_e(N_{R_i}(R_i^2)).$$

3. When R is a Commutative PIR

In this Section, R is a commutative principal ideal ring. Following Hungerford (1974) such a ring is the direct product of a family of rings $\{R_i : i \in I\}$, where each R_i is either a principal ideal domain (PID) or a *special PIR*. A PIR is special if it has a unique proper prime ideal which is nonzero and nilpotent.

Theorem 3.1

Let R be a ring with unity, and suppose that R is a direct product of the rings R_i , $i \in I$. Then $N_R(R^2)$ is isomorphic to $\bigotimes_{i \in I} N_{R_i}(R_i^2)$, where each R_i is endowed with the quotient topology with respect to the i -th projection map.

Corollary 3.2

$$\mathcal{P}_e(N_R(R^2)) = \bigotimes_{i \in I} \mathcal{P}_e(N_{R_i}(R_i^2)).$$

3. When R is a Commutative PIR

3. When R is a Commutative PIR

Theorem 3.3

Let R be a commutative PIR. Then the mapping $P \rightarrow P^+$ defines a one-to-one correspondence between the set of prime ideals of R and the set of equiprime invariant subgroups of $N_R(R^2)$.

3. When R is a Commutative PIR

Theorem 3.3

Let R be a commutative PIR. Then the mapping $P \rightarrow P^+$ defines a one-to-one correspondence between the set of prime ideals of R and the set of equiprime invariant subgroups of $N_R(R^2)$.

Corollary 3.4

Let R be a special PIR. Then $\mathcal{P}_e(N_R(R^2)) = P^+$, where P is the unique nonzero proper prime ideal of R .

3. When R is a Commutative PIR

Theorem 3.3

Let R be a commutative PIR. Then the mapping $P \rightarrow P^+$ defines a one-to-one correspondence between the set of prime ideals of R and the set of equiprime invariant subgroups of $N_R(R^2)$.

Corollary 3.4

Let R be a special PIR. Then $\mathcal{P}_e(N_R(R^2)) = P^+$, where P is the unique nonzero proper prime ideal of R .

Corollary 3.5

Let R be a commutative PIR. Then $\mathcal{P}_e(N_R(R^2)) = \bigotimes_{i \in I} P_i$, where $P_i = 0$

if R_i is a PID and $P_i = Q_i^+$, where Q_i is the unique nonzero proper prime ideal of R_i in the case that R_i is a special PIR.

3. When R is a Commutative PIR

Theorem 3.3

Let R be a commutative PIR. Then the mapping $P \rightarrow P^+$ defines a one-to-one correspondence between the set of prime ideals of R and the set of equiprime invariant subgroups of $N_R(R^2)$.

Corollary 3.4

Let R be a special PIR. Then $\mathcal{P}_e(N_R(R^2)) = P^+$, where P is the unique nonzero proper prime ideal of R .

Corollary 3.5

Let R be a commutative PIR. Then $\mathcal{P}_e(N_R(R^2)) = \bigotimes_{i \in I} P_i$, where $P_i = 0$

if R_i is a PID and $P_i = Q_i^+$, where Q_i is the unique nonzero proper prime ideal of R_i in the case that R_i is a special PIR.

3. When R is a Commutative PIR

3. When R is a Commutative PIR

Corollary 3.6

Let R be a commutative PIR. Then $\mathcal{P}(R)^+ = \mathcal{P}_e(N_R(R^2))$.

3. When R is a Commutative PIR

Corollary 3.6

Let R be a commutative PIR. Then $\mathcal{P}(R)^+ = \mathcal{P}_e(N_R(R^2))$.

Example 3.7

Let $R = \mathbb{R} \times \mathbb{Z}_4$. Then

$$\mathcal{P}_e(N_R(R^2)) = (\mathcal{P}(R))^+ = (\mathcal{P}(\mathbb{R}))^+ \times (\mathcal{P}(\mathbb{Z}_4))^+ = \{0\}^+ \times \{0, 2\}^+ = \{a \in N_R(R^2) : a(R \times \{0\}) = 0 \text{ and } a(\{0\} \times \mathbb{Z}_4^2) \in \{0, 2\}^2\}$$

4. Conclusion

THANK YOU!