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1. Preliminaries

Definition 1.1
A near-ring is a triple (N,+, ·) where

1 (N,+) is a (not necessarily Abelian) group;
2 (N, ·) is a semigroup;
3 (x + y)z = xz + yz for all x , y , z ∈ N.

A near-ring N is zero-symmetric if n0 = 0 for all n ∈ N.

In the sequel, N is a zero-symmetric near-ring.
Homomorphisms, isomorphisms, left, right and two-sided ideals for
near-rings are defined in a natural way.

Definition 1.2
A subgroup A of N is left (resp. right) invariant if NA ⊆ A (resp.
AN ⊆ A). If A is both left and right invariant, it is called an invariant
subgroup of N.

Geoff Booth and Kabelo Mogae (Institute) On Primeness in Near-rings of Homogeneous Functions October 25, 2014 2 / 14



1. Preliminaries

Definition 1.1
A near-ring is a triple (N,+, ·) where

1 (N,+) is a (not necessarily Abelian) group;
2 (N, ·) is a semigroup;
3 (x + y)z = xz + yz for all x , y , z ∈ N.

A near-ring N is zero-symmetric if n0 = 0 for all n ∈ N.

In the sequel, N is a zero-symmetric near-ring.

Homomorphisms, isomorphisms, left, right and two-sided ideals for
near-rings are defined in a natural way.

Definition 1.2
A subgroup A of N is left (resp. right) invariant if NA ⊆ A (resp.
AN ⊆ A). If A is both left and right invariant, it is called an invariant
subgroup of N.

Geoff Booth and Kabelo Mogae (Institute) On Primeness in Near-rings of Homogeneous Functions October 25, 2014 2 / 14



1. Preliminaries

Definition 1.1
A near-ring is a triple (N,+, ·) where

1 (N,+) is a (not necessarily Abelian) group;
2 (N, ·) is a semigroup;
3 (x + y)z = xz + yz for all x , y , z ∈ N.

A near-ring N is zero-symmetric if n0 = 0 for all n ∈ N.

In the sequel, N is a zero-symmetric near-ring.
Homomorphisms, isomorphisms, left, right and two-sided ideals for
near-rings are defined in a natural way.

Definition 1.2
A subgroup A of N is left (resp. right) invariant if NA ⊆ A (resp.
AN ⊆ A). If A is both left and right invariant, it is called an invariant
subgroup of N.

Geoff Booth and Kabelo Mogae (Institute) On Primeness in Near-rings of Homogeneous Functions October 25, 2014 2 / 14



1. Preliminaries

Definition 1.1
A near-ring is a triple (N,+, ·) where

1 (N,+) is a (not necessarily Abelian) group;
2 (N, ·) is a semigroup;
3 (x + y)z = xz + yz for all x , y , z ∈ N.

A near-ring N is zero-symmetric if n0 = 0 for all n ∈ N.

In the sequel, N is a zero-symmetric near-ring.
Homomorphisms, isomorphisms, left, right and two-sided ideals for
near-rings are defined in a natural way.

Definition 1.2
A subgroup A of N is left (resp. right) invariant if NA ⊆ A (resp.
AN ⊆ A). If A is both left and right invariant, it is called an invariant
subgroup of N.

Geoff Booth and Kabelo Mogae (Institute) On Primeness in Near-rings of Homogeneous Functions October 25, 2014 2 / 14



1. Preliminaries

In this talk, a one-sided ideal A of a ring R will be called prime if a, b ∈ R,
aRb ⊆ A implies a ∈ A or b ∈ A. Note that, in the case that A is a
two-sided ideal, this coincides with the usual definition of primeness.
A number of notions for primeness exist for near-rings. We will be
concerned with two.

Definition 1.3
A subgroup A of N is called

3-prime if a, b ∈ N, aNb ⊆ A implies a ∈ A or b ∈ A (Groenewald,
1991);

equiprime (e-prime) if a, x , y ∈ N, anx − any ∈ A for all n ∈ N
implies a ∈ A or x − y ∈ A (Booth, Groenewald and Veldsman, 1990).
N is a 3-prime (resp. equiprime) near-ring if {0} is a 3-prime (resp.
equiprime) ideal of N.
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1. Preliminaries

Note that equiprime =⇒ 3-prime.

Definition 1.4
The 3-prime radical, P3(N) (resp. equiprime radical Pe (N)), is the
intersection of the 3-prime (resp. equiprime) ideals of N.

Definition 1.5
Let R be a ring with unity, and let G be a unital right R-module. A
function f : G → G is called homogeneous if f (gr) = f (g)r for all g ∈ G
and r ∈ R.

The set of all homogeneous self-maps of G will be denoted MR (G ).
If R is a topological ring and G is a topological unital R-module, the set
of all continuous homogeneous self-maps of G will be denoted NR (G ).
Clearly, MR (G ) and NR (G ) are zero-symmetric near-rings with respect to
pointwise addition and composition of functions.
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1. Preliminaries

Clearly, NR (G ) ⊆ MR (G ). The reverse inclusion does not hold in general
as the following example shows.

Example 1.6

Let R and R2 have their usual topologies. Let

f (a, b) =
{
(−a, 0) if b 6= 0
(a, 0) otherwise

.

Then clearly, f ∈ MR(R
2). But f is not continuous at (1, 0), so

f /∈ NR(R
2).
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2. Primeness in Near-rings of Homogeneous Self-maps

In this Section, R is a topological ring with unity. We will consider
NR (R2).
An important class of homogeneous functions in this context are the

matrix functions of the form
[
a11 a12
a21 a22

]
, aij ∈ R, 1 ≤ i , j ≤ 2.

Their action is defined in the natural way, i.e.[
a11 a12
a21 a22

] [
r1
r2

]
=

[
a11r1 + a12r2
a21r1 + a22r2

]
for all r1, r2 ∈ R.

Clearly, matrix functions are continuous and homogeneous.
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2. Primeness in Near-rings of Homogeneous Self-maps

Theorem 2.1
The following statements are equivalent:

1 R is a prime ring.
2 NR (R2) is an equiprime near-ring.
3 NR (R2) is a 3-prime near-ring.

Veldsman (1990), Mogae (2013)

Definition 2.2
Let A and B be subsets of R and NR (R2), respectively. Then

A+ = (A2 : R2)N =
{
f ∈ N : f (R2) ⊆ A2

}
and

B+ =

{
x ∈ R :

[
x 0
0 0

]
∈ B.

}
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2. Primeness in Near-rings of Homogeneous Self-maps

Theorem 2.3

Let R be a topological ring, and let P be a right ideal of R. Then the
following are equivalent:

1 P is a prime right ideal of R.
2 P+ is an equiprime right ideal of N.
3 P+ is a 3-prime right ideal of N.

Lemma 2.4

Let
[
u
v

]
∈ R2 and let a ∈ N. Then a

[
u 0
v 0

]
=

[
a
([
u
v

])
0
0

]
and

a
[
0 u
0 v

]
=

[
0
0
a
([
u
v

])]
.

Maxson and van Wyk (1991)
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Theorem 2.3
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2. Primeness in Near-rings of Homogeneous Self-maps

Lemma 2.5
Let P be a 3-prime invariant subgroup of N, and let a ∈ N. Then
a
([
u
v

])
∈ (P+)2 for all

[
u
v

]
∈ R2 if and only if a ∈ P.

Theorem 2.6
Let P be a 3-prime right ideal of N. Then P+ is a prime right ideal of R.

Lemma 2.7
Let P be a 3-prime invariant subgroup of N. Then (P+)+ = P.

Corollary 2.8
P is a 3-prime ideal of N if and only if it is an equiprime ideal of N.
Hence P3(N) = Pe (N).
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2. Primeness in Near-rings of Homogeneous Self-maps

Problem 2.9
It is known that the notions of 3-prime and equiprime do not in general
coincide for zero-symmetric near-rings. However it is an open question
whether they coincide for near-rings with unity.

Theorem 2.10
The mapping P → P+ is an injection from the set of prime ideals of R to
the set of equiprime right ideals of NR (R2).

Corollary 2.11

P(R)+ ⊆ Pe (NR (R2)).

Lemma 2.12
Let P be a prime ideal of R. Then (P+)+ = P.
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3. When R is a Commutative PIR

In this Section, R is a commutative principal ideal ring. Following
Hungerford (1974) such a ring is the direct product of a family of rings
{Ri : i ∈ I}, where each Ri is either a principal ideal domain (PID) or a
special PIR. A PIR is special if it has a unique proper prime ideal which is
nonzero and nilpotent.

Theorem 3.1
Let R be a ring with unity, and suppose that R is a direct product of the
rings Ri , i ∈ I . Then NR (R2) is isomorphic to

⊗
i∈I
NRi (R

2
i ), where each Ri

is endowed with the quotient topology with respect to the i-th projection
map.

Corollary 3.2

Pe (NR (R2)) =
⊗
i∈I
Pe (NRi (R2i )).
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3. When R is a Commutative PIR

Theorem 3.3
Let R be a commutative PIR. Then the mapping P → P+ defines a
one-to-one correspondence between the set of prime ideals of R and the
set of equiprime invariant subgroups of NR (R2).

Corollary 3.4

Let R be a special PIR. Then Pe (NR (R2)) = P+, where P is the unique
nonzero proper prime ideal of R.

Corollary 3.5

Let R be a commutative PIR. Then Pe (NR (R2)) =
⊗
i∈I
Pi , where Pi = 0

if Ri is a PID and Pi = Q+i , where Qi is the unique nonzero proper prime
ideal of Ri in the case that Ri is a special PIR.
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3. When R is a Commutative PIR

Corollary 3.6

Let R be a commutative PIR. Then P(R)+ = Pe (NR (R2)).

Example 3.7
Let R = R×Z4. Then
Pe (NR (R2)) = (P(R))+ = (P(R))+ × (P(Z4))+ = {0}+ × {0, 2}+ ={
a ∈ NR (R2) : a(R × {0}) = 0 and a({0} ×Z2

4) ∈ {0, 2}2
}
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4. Conclusion

THANK YOU!
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