

On homological dimensions relative to a weakly Wakamatsu tilting module

Driss BENNIS

Rabat - Morocco

joint work with

J. R. Garcia Rozas and L. Oyonarte

Arithmetic and Ideal Theory of Rings and Semigroups

- Graz, Austria -

September, 2014

Outline

1 Preliminaries and Motivation

2 G_C -projective modules

3 P_C -projective dimension

Outline

1 Preliminaries and Motivation

2 \mathbf{G}_C -projective modules

3 P_C -projective dimension

Outline

1 Preliminaries and Motivation

2 G_C -projective modules

3 P_C -projective dimension

Outline

1 Preliminaries and Motivation

2 G_C -projective modules

3 P_C -projective dimension

Notations

- R and S will be associative rings with identity.
All modules will be, unless otherwise specified, unital left R -modules.
- When right R -modules need to be used, they will be denoted as M_R , while in these cases left R -modules (resp, (R, S) -bimodule) will be denoted by ${}_RM$ (resp, ${}_RM_S$).
- We use $Proj(R)$ to denote the class of all projective R -modules.
- The category of all left R -modules will be denoted by $R\text{-Mod}$.
- For an R -module C we use $Add_R(C)$ (resp. $add_R(C)$) to denote the class of all R -modules which are isomorphic to direct summands of direct sums (resp. finite direct sums) of copies of C .
- Given the class \mathcal{F} , the class of all modules N such that $\text{Ext}_R^{\geq 1}(F, N) = 0$ for every $F \in \mathcal{F}$ will be denoted by \mathcal{F}^\perp (similarly, ${}^\perp\mathcal{F} = \{N; \text{Ext}_R^{\geq 1}(N, F) = 0 \ \forall F \in \mathcal{F}\}$).

Notations

- R and S will be associative rings with identity.
All modules will be, unless otherwise specified, unital left R -modules.
- When right R -modules need to be used, they will be denoted as M_R , while in these cases left R -modules (resp, (R, S) -bimodule) will be denoted by ${}_RM$ (resp, ${}_RM_S$).
- We use $Proj(R)$ to denote the class of all projective R -modules.
- The category of all left R -modules will be denoted by $R\text{-Mod}$.
- For an R -module C we use $Add_R(C)$ (resp. $add_R(C)$) to denote the class of all R -modules which are isomorphic to direct summands of direct sums (resp. finite direct sums) of copies of C .
- Given the class \mathcal{F} , the class of all modules N such that $\text{Ext}_R^{\geq 1}(F, N) = 0$ for every $F \in \mathcal{F}$ will be denoted by \mathcal{F}^\perp (similarly, ${}^\perp\mathcal{F} = \{N; \text{Ext}_R^{\geq 1}(N, F) = 0 \ \forall F \in \mathcal{F}\}$).

Notations

- R and S will be associative rings with identity.
All modules will be, unless otherwise specified, unital left R -modules.
- When right R -modules need to be used, they will be denoted as M_R , while in these cases left R -modules (resp, (R, S) -bimodule) will be denoted by $_RM$ (resp, $_RM_S$).
- We use $\text{Proj}(R)$ to denote the class of all projective R -modules.
- The category of all left R -modules will be denoted by $R\text{-Mod}$.
- For an R -module C we use $\text{Add}_R(C)$ (resp. $\text{add}_R(C)$) to denote the class of all R -modules which are isomorphic to direct summands of direct sums (resp. finite direct sums) of copies of C .
- Given the class \mathcal{F} , the class of all modules N such that $\text{Ext}_R^{\geq 1}(F, N) = 0$ for every $F \in \mathcal{F}$ will be denoted by \mathcal{F}^\perp (similarly, ${}^\perp\mathcal{F} = \{N; \text{Ext}_R^{\geq 1}(N, F) = 0 \ \forall F \in \mathcal{F}\}$).

Notations

- R and S will be associative rings with identity.
All modules will be, unless otherwise specified, unital left R -modules.
- When right R -modules need to be used, they will be denoted as M_R , while in these cases left R -modules (resp, (R, S) -bimodule) will be denoted by ${}_RM$ (resp, ${}_RM_S$).
- We use $Proj(R)$ to denote the class of all projective R -modules.
- The category of all left R -modules will be denoted by $R\text{-Mod}$.
- For an R -module C we use $Add_R(C)$ (resp. $add_R(C)$) to denote the class of all R -modules which are isomorphic to direct summands of direct sums (resp. finite direct sums) of copies of C .
- Given the class \mathcal{F} , the class of all modules N such that $\text{Ext}_R^{\geq 1}(F, N) = 0$ for every $F \in \mathcal{F}$ will be denoted by \mathcal{F}^\perp (similarly, ${}^\perp\mathcal{F} = \{N; \text{Ext}_R^{\geq 1}(N, F) = 0 \ \forall F \in \mathcal{F}\}$).

Notations

- R and S will be associative rings with identity.
All modules will be, unless otherwise specified, unital left R -modules.
- When right R -modules need to be used, they will be denoted as M_R , while in these cases left R -modules (resp, (R, S) -bimodule) will be denoted by ${}_RM$ (resp, ${}_RM_S$).
- We use $Proj(R)$ to denote the class of all projective R -modules.
- The category of all left R -modules will be denoted by $R\text{-Mod}$.
- For an R -module C we use $Add_R(C)$ (resp. $add_R(C)$) to denote the class of all R -modules which are isomorphic to direct summands of direct sums (resp. finite direct sums) of copies of C .
- Given the class \mathcal{F} , the class of all modules N such that $\text{Ext}_R^{\geq 1}(F, N) = 0$ for every $F \in \mathcal{F}$ will be denoted by \mathcal{F}^\perp (similarly, ${}^\perp\mathcal{F} = \{N; \text{Ext}_R^{\geq 1}(N, F) = 0 \ \forall F \in \mathcal{F}\}$).

Notations

- R and S will be associative rings with identity.
All modules will be, unless otherwise specified, unital left R -modules.
- When right R -modules need to be used, they will be denoted as M_R , while in these cases left R -modules (resp, (R, S) -bimodule) will be denoted by ${}_RM$ (resp, ${}_RM_S$).
- We use $Proj(R)$ to denote the class of all projective R -modules.
- The category of all left R -modules will be denoted by $R\text{-Mod}$.
- For an R -module C we use $Add_R(C)$ (resp. $add_R(C)$) to denote the class of all R -modules which are isomorphic to direct summands of direct sums (resp. finite direct sums) of copies of C .
- Given the class \mathcal{F} , the class of all modules N such that $\text{Ext}_R^{\geq 1}(F, N) = 0$ for every $F \in \mathcal{F}$ will be denoted by \mathcal{F}^\perp (similarly, ${}^\perp\mathcal{F} = \{N; \text{Ext}_R^{\geq 1}(N, F) = 0 \ \forall F \in \mathcal{F}\}$).

Notations

- R and S will be associative rings with identity.
All modules will be, unless otherwise specified, unital left R -modules.
- When right R -modules need to be used, they will be denoted as M_R , while in these cases left R -modules (resp, (R, S) -bimodule) will be denoted by ${}_RM$ (resp, ${}_RM_S$).
- We use $Proj(R)$ to denote the class of all projective R -modules.
- The category of all left R -modules will be denoted by $R\text{-Mod}$.
- For an R -module C we use $Add_R(C)$ (resp. $add_R(C)$) to denote the class of all R -modules which are isomorphic to direct summands of direct sums (resp. finite direct sums) of copies of C .
- Given the class \mathcal{F} , the class of all modules N such that $\text{Ext}_R^{\geq 1}(F, N) = 0$ for every $F \in \mathcal{F}$ will be denoted by \mathcal{F}^\perp (similarly, ${}^\perp\mathcal{F} = \{N; \text{Ext}_R^{\geq 1}(N, F) = 0 \ \forall F \in \mathcal{F}\}$).

Semidualizing modules

Semidualizing modules

Araya, Takahashi and Yoshino (2005)

A semidualizing module is an (R, S) -bimodule C satisfying the following properties:

- ① $_R C$ and C_S both admit a degreewise finite projective resolution in the corresponding module categories ($R\text{-Mod}$ and $\text{Mod-}S$).
- ② $\text{Ext}_R^{\geq 1}(C, C) = \text{Ext}_S^{\geq 1}(C, C) = 0$.
- ③ The natural homothety maps $R \rightarrow \text{Hom}_S(C, C)$ and $S \rightarrow \text{Hom}_R(C, C)$ both are ring isomorphisms.

Semidualizing modules were introduced by Foxby, Golod and Vasconcelos under different names:

- Foxby (1973) called them PG-modules of rank one,
- Vasconcelos (1974) called them Spherical modules, and
- Golod (1984) suitable modules.
- It was Christensen (2001) who used the term “semidualizing”.

Semidualizing modules

Araya, Takahashi and Yoshino (2005)

A semidualizing module is an (R, S) -bimodule C satisfying the following properties:

- ① $_R C$ and C_S both admit a degreewise finite projective resolution in the corresponding module categories ($R\text{-Mod}$ and $\text{Mod-}S$).
- ② $\text{Ext}_R^{\geq 1}(C, C) = \text{Ext}_S^{\geq 1}(C, C) = 0$.
- ③ The natural homothety maps $R \rightarrow \text{Hom}_S(C, C)$ and $S \rightarrow \text{Hom}_R(C, C)$ both are ring isomorphisms.

Semidualizing modules were introduced by Foxby, Golod and Vasconcelos under different names:

- Foxby (1973) called them PG-modules of rank one,
- Vasconcelos (1974) called them Spherical modules, and
- Golod (1984) suitable modules.
- It was Christensen (2001) who used the term “semidualizing”.

\mathbf{G}_C -projective modules

\mathbf{G}_C -projective modules

Assume that R is a commutative Noetherian ring and C is a semidualizing R -module.

\mathbf{G}_C -projective modules

Assume that R is a commutative Noetherian ring and C is a semidualizing R -module.

Definition (Totally C -reflexive module, Golod (1984))

A finitely generated R -module M is called **totally C -reflexive** if:

- The natural biduality map $M \rightarrow \text{Hom}_R(\text{Hom}_R(M, C), C)$ is an isomorphism,
- $\text{Ext}_R^i(M, C) = 0 = \text{Ext}_R^i(\text{Hom}_R(M, C), C)$ for $i > 0$.

\mathbf{G}_C -projective modules

Assume that R is a commutative Noetherian ring and C is a semidualizing R -module.

Definition (C-Gorenstein projective module, Holm and Jorgensen (2006))

An R -module M is said to be C-Gorenstein projective module if there exists an exact sequence of R -modules

$$\mathbf{X} = \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow C \otimes Q^0 \rightarrow C \otimes Q^1 \rightarrow \cdots$$

where every P_i and Q^i 's are projective for every $i \in \mathbb{N}$, $M \cong \text{Im}(P_0 \rightarrow C \otimes Q^0)$, and such that $\text{Hom}_R(-, C \otimes Q)$ leaves the sequence \mathbf{X} exact whenever Q is a projective module.

G_C -projective modules

- White (2010) extended the study of C-Gorenstein projective modules to not necessarily Noetherian rings, where she used the term “ G_C -projective” instead of “C-Gorenstein projective”.
- For any arbitrary ring R and a semidualizing (R, S) -bimodule C , Geng and Ding (2011) showed that the set of all R -modules of the form $C \otimes_R P$, with P projective, coincide with the set $\text{Add}_S(C)$.

G_C -projective modules

- White (2010) extended the study of C-Gorenstein projective modules to not necessarily Noetherian rings, where she used the term “ G_C -projective” instead of “C-Gorenstein projective”.
- For any arbitrary ring R and a semidualizing (R, S) -bimodule C , Geng and Ding (2011) showed that the set of all R -modules of the form $C \otimes_R P$, with P projective, coincide with the set $\text{Add}_S(C)$.

G_C -projective modules

Definition (G_C -projective module; Liu, Huang and Xu (2013))

For any arbitrary ring R and a semidualizing (R, S) -bimodule C , an R -module M is said to be G_C -projective if there exists an exact sequence of R -modules

$$\mathbf{X} = \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow A^0 \rightarrow A^1 \rightarrow \cdots$$

where the P_i 's are all projective, $A^i \in Add_R(C)$ for every $i \in \mathbb{N}$, $M \cong \text{Im}(P_0 \rightarrow A^0)$, and such that $\text{Hom}_R(-, Q)$ leaves the sequence \mathbf{X} exact whenever $Q \in Add_R(C)$.

We say that the sequence \mathbf{X} is a $\text{Hom}_R(-, Add_R(C))$ -exact.

We use $G_C P(R)$ to denote the class of all G_C -projective R -modules.

Principal results

- $\text{Proj}(R) \subseteq G_C P(R)$.
- $\text{Add}_R(C) \subseteq G_C P(R)$.
- The class $G_C P(R)$ is projectively resolving; that is, for every short exact sequence of R -modules $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0$, where $L \in G_C P(R)$, we have: $M \in G_C P(R)$ if and only if $N \in G_C P(R)$.
- For every family of R -modules $(M_i)_{i \in I}$, the sum $\bigoplus G_i \in G_C P(R)$ if and only if every $M_i \in G_C P(R)$.

Question.

Is the condition on C to be semidualizing necessary so that the relative homological dimensions preserve their properties?

Principal results

- $\text{Proj}(R) \subseteq G_C P(R)$.
- $\text{Add}_R(C) \subseteq G_C P(R)$.
- The class $G_C P(R)$ is projectively resolving; that is, for every short exact sequence of R -modules $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0$, where $L \in G_C P(R)$, we have: $M \in G_C P(R)$ if and only if $N \in G_C P(R)$.
- For every family of R -modules $(M_i)_{i \in I}$, the sum $\bigoplus G_i \in G_C P(R)$ if and only if every $M_i \in G_C P(R)$.

Question.

Is the condition on C to be semidualizing necessary so that the relative homological dimensions preserve their properties?

Principal results

- $\text{Proj}(R) \subseteq G_C P(R)$.
- $\text{Add}_R(C) \subseteq G_C P(R)$.
- The class $G_C P(R)$ is projectively resolving; that is, for every short exact sequence of R -modules $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0$, where $L \in G_C P(R)$, we have: $M \in G_C P(R)$ if and only if $N \in G_C P(R)$.
- For every family of R -modules $(M_i)_{i \in I}$, the sum $\bigoplus G_i \in G_C P(R)$ if and only if every $M_i \in G_C P(R)$.

Question.

Is the condition on C to be semidualizing necessary so that the relative homological dimensions preserve their properties?

Principal results

- $\text{Proj}(R) \subseteq G_C P(R)$.
- $\text{Add}_R(C) \subseteq G_C P(R)$.
- The class $G_C P(R)$ is projectively resolving; that is, for every short exact sequence of R -modules $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0$, where $L \in G_C P(R)$, we have: $M \in G_C P(R)$ **if and only if** $N \in G_C P(R)$.
- For every family of R -modules $(M_i)_{i \in I}$, the sum $\bigoplus G_i \in G_C P(R)$ if and only if every $M_i \in G_C P(R)$.

Question.

Is the condition on C to be semidualizing necessary so that the relative homological dimensions preserve their properties?

Principal results

- $\text{Proj}(R) \subseteq G_C P(R)$.
- $\text{Add}_R(C) \subseteq G_C P(R)$.
- The class $G_C P(R)$ is projectively resolving; that is, for every short exact sequence of R -modules $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0$, where $L \in G_C P(R)$, we have: $M \in G_C P(R)$ **if and only if** $N \in G_C P(R)$.
- For every family of R -modules $(M_i)_{i \in I}$, the sum $\bigoplus G_i \in G_C P(R)$ if and only if every $M_i \in G_C P(R)$.

Question.

Is the condition on C to be semidualizing necessary so that the relative homological dimensions preserve their properties?

Principal results

- $\text{Proj}(R) \subseteq G_C P(R)$.
- $\text{Add}_R(C) \subseteq G_C P(R)$.
- The class $G_C P(R)$ is projectively resolving; that is, for every short exact sequence of R -modules $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0$, where $L \in G_C P(R)$, we have: $M \in G_C P(R)$ **if and only if** $N \in G_C P(R)$.
- For every family of R -modules $(M_i)_{i \in I}$, the sum $\bigoplus G_i \in G_C P(R)$ if and only if every $M_i \in G_C P(R)$.

Question.

Is the condition on C to be semidualizing necessary so that the relative homological dimensions preserve their properties?

1 Preliminaries and Motivation

2 G_C -projective modules

3 P_C -projective dimension

G_C -projective modules associated to a Σ -self-orthogonal module C

Let C be an R -module. The class $G_C P(R)$ is closed under direct sums and extensions.

Let C be an R -module. The following conditions are equivalent:

- 1 $C \in G_C P(R)$.
- 2 C is Σ -self-orthogonal, that is $\text{Ext}_R^{\geq 1}(C, C^{(I)}) = 0$ for every set I .
- 3 $\text{Add}_R(C) \subseteq \text{Add}_R(C)^\perp$.
- 4 $\text{Add}_R(C) \subseteq {}^\perp \text{Add}_R(C)$.

Let C be a Σ -self-orthogonal R -module. Then, the class $G_C P(R)$ is projectively resolving.

Consequently, $G_C P(R)$ is closed under direct summands.

G_C -projective modules associated to a Σ -self-orthogonal module C

Let C be an R -module. The class $G_C P(R)$ is closed under direct sums and extensions.

Let C be an R -module. The following conditions are equivalent:

- 1 $C \in G_C P(R)$.
- 2 C is Σ -self-orthogonal, that is $\text{Ext}_R^{\geq 1}(C, C^{(I)}) = 0$ for every set I .
- 3 $\text{Add}_R(C) \subseteq \text{Add}_R(C)^\perp$.
- 4 $\text{Add}_R(C) \subseteq {}^\perp \text{Add}_R(C)$.

Let C be a Σ -self-orthogonal R -module. Then, the class $G_C P(R)$ is projectively resolving.

Consequently, $G_C P(R)$ is closed under direct summands.

G_C -projective modules associated to a Σ -self-orthogonal module C

Let C be an R -module. The class $G_C P(R)$ is closed under direct sums and extensions.

Let C be an R -module. The following conditions are equivalent:

- 1 $C \in G_C P(R)$.
- 2 C is Σ -self-orthogonal, that is $\text{Ext}_R^{\geq 1}(C, C^{(I)}) = 0$ for every set I .
- 3 $\text{Add}_R(C) \subseteq \text{Add}_R(C)^\perp$.
- 4 $\text{Add}_R(C) \subseteq {}^\perp \text{Add}_R(C)$.

Let C be a Σ -self-orthogonal R -module. Then, the class $G_C P(R)$ is projectively resolving.

Consequently, $G_C P(R)$ is closed under direct summands.

G_C -projective modules associated to a Σ -self-orthogonal module C

Let C be an R -module. The class $G_C P(R)$ is closed under direct sums and extensions.

Let C be an R -module. The following conditions are equivalent:

- 1 $C \in G_C P(R)$.
- 2 C is Σ -self-orthogonal, that is $\text{Ext}_R^{\geq 1}(C, C^{(I)}) = 0$ for every set I .
- 3 $\text{Add}_R(C) \subseteq \text{Add}_R(C)^\perp$.
- 4 $\text{Add}_R(C) \subseteq {}^\perp \text{Add}_R(C)$.

Let C be a Σ -self-orthogonal R -module. Then, the class $G_C P(R)$ is projectively resolving.

Consequently, $G_C P(R)$ is closed under direct summands.

G_C -projective modules associated to a weakly Wakamatsu tilting module C

G_C -projective modules associated to a weakly Wakamatsu tilting module C

Definition

An R -module C is weakly Wakamatsu tilting if it has the following two properties:

- 1 C is Σ -self-orthogonal. (that is, $C^{(I)} \in \text{Add}_R(C)^\perp$ for every set I).
- 2 There exists a $\text{Hom}_R(-, \text{Add}_R(C))$ -exact exact sequence of R -modules

$$\mathbf{X} : 0 \longrightarrow R \xrightarrow{f_0} C_0 \xrightarrow{f_1} C_1 \xrightarrow{f_2} C_2 \xrightarrow{f_3} \dots$$

where, for every $i \in \mathbb{N}$, $C_i \in \text{Add}_R(C)$.

Mantese and Reiten (2004)

An R -module C is Wakamatsu tilting if:

- 1 ${}_R C$ admits a degreewise finite projective resolution.

G_C -projective modules associated to a weakly Wakamatsu tilting module C

Mantese and Reiten (2004)

An R -module C is Wakamatsu tilting if:

- 1 $_R C$ admits a degreewise finite projective resolution.
- 2 $\text{Ext}_R^{\geq 1}(C, C) = 0$.
- 3 there exists a $\text{Hom}_R(-, C)$ -exact exact sequence of R -modules

$$0 \longrightarrow R \xrightarrow{f_0} C_0 \xrightarrow{f_1} C_1 \xrightarrow{f_2} C_2 \xrightarrow{f_3} \dots$$

where, for every $i \in \mathbb{N}$, $C_i \in \text{add}_R(C)$.

(Wakamatsu 2004) If M is a left R -module and $S = \text{End}_R(M)$ then $_R M_S$ is semidualizing if and only if $_R M$ is Wakamatsu tilting, if and only if M_S is Wakamatsu tilting with $R = \text{End}_S(M)$.

G_C -projective modules associated to a weakly Wakamatsu tilting module C

Mantese and Reiten (2004)

An R -module C is Wakamatsu tilting if:

- ① $_R C$ admits a degreewise finite projective resolution.
- ② $\text{Ext}_R^{\geq 1}(C, C) = 0$.
- ③ there exists a $\text{Hom}_R(-, C)$ -exact exact sequence of R -modules

$$0 \longrightarrow R \xrightarrow{f_0} C_0 \xrightarrow{f_1} C_1 \xrightarrow{f_2} C_2 \xrightarrow{f_3} \dots$$

where, for every $i \in \mathbb{N}$, $C_i \in \text{add}_R(C)$.

(Wakamatsu 2004) If M is a left R -module and $S = \text{End}_R(M)$ then $_R M_S$ is semidualizing if and only if $_R M$ is Wakamatsu tilting, if and only if M_S is Wakamatsu tilting with $R = \text{End}_S(M)$.

G_C -projective modules associated to a weakly Wakamatsu tilting module C

Let C be a Σ -self-orthogonal R -module. Then, the following conditions are equivalent:

- 1 C is weakly Wakamatsu tilting.
- 2 $R \in G_C P(R)$.
- 3 $\text{Proj}(R) \subseteq G_C P(R)$.

G_C -projective modules associated to a weakly Wakamatsu tilting module C

Let C be a Σ -self-orthogonal R -module. Then the following assertions are equivalent.

- 1) $M \in G_C P(R)$ if and only if there exists a $\text{Hom}_R(-, \text{Add}_R(C))$ -exact exact sequence $\cdots \rightarrow C_1 \rightarrow C_0 \rightarrow C^0 \rightarrow C^1 \rightarrow \cdots$ in $R\text{-Mod}$ with $C_i, C^i \in \text{Add}_R(C)$ and $M \cong \text{Im}(C_0 \rightarrow C^0)$.
- 2) C is weakly Wakamatsu tilting.

Interaction with Bass class

Interaction with Bass class

Let C be an R -module.

Denote by $C - GP(R)$ the class of all left R -modules M such that there exists $\text{Hom}_R(\text{Add}_R(C), -)$ -exact and $\text{Hom}_R(-, \text{Add}_R(C))$ -exact exact sequence of R -modules $\cdots \rightarrow C_1 \rightarrow C_0 \rightarrow C^0 \rightarrow C^1 \rightarrow \cdots$ with $C_i, C^i \in \text{Add}_R(C)$ and $M \cong \text{Im}(C_0 \rightarrow C^0)$.

Definition

Let C be an R -module and consider $S = \text{End}_R(C)$.

The Bass classe $\mathcal{B}_C(R)$ consists of all left R -modules N satisfying:

- B1) $\text{Ext}_R^{\geq 1}(C, N) = 0$,
- B2) $\text{Tor}_{\geq 1}^S(C, \text{Hom}_R(C, N)) = 0$,
- B3) the canonical map $\nu_N : C \otimes_S \text{Hom}_R(C, N) \rightarrow N$ is an isomorphism of R -modules.

Interaction with Bass class

Let C be an R -module.

Denote by $C - GP(R)$ the class of all left R -modules M such that there exists $\text{Hom}_R(\text{Add}_R(C), -)$ -exact and $\text{Hom}_R(-, \text{Add}_R(C))$ -exact exact sequence of R -modules $\cdots \rightarrow C_1 \rightarrow C_0 \rightarrow C^0 \rightarrow C^1 \rightarrow \cdots$ with $C_i, C^i \in \text{Add}_R(C)$ and $M \cong \text{Im}(C_0 \rightarrow C^0)$.

Definition

Let C be an R -module and consider $S = \text{End}_R(C)$.

The Bass classe $\mathcal{B}_C(R)$ consists of all left R -modules N satisfying:

- B1) $\text{Ext}_R^{\geq 1}(C, N) = 0$,
- B2) $\text{Tor}_{\geq 1}^S(C, \text{Hom}_R(C, N)) = 0$,
- B3) the canonical map $\nu_N : C \otimes_S \text{Hom}_R(C, N) \rightarrow N$ is an isomorphism of R -modules.

Interaction with Bass class

Geng and Ding (2011)

If R is commutative and C is semidualizing, then
 $C - GP(R) = G_C P(R) \cap \mathcal{B}_C(R)$.

Interaction with Bass class

Theorem

Let C be an R -module and consider $S = \text{End}_R(C)$.

If C_S is \otimes -faithful (i.e. it satisfies: $N \otimes_R C = 0 \Rightarrow N = 0$), then the following statements are equivalent.

- i) $\text{Add}_R(C) \subseteq \mathcal{B}_C(R)$.
- ii) $C - \text{GP}(R) = \mathcal{G}_C P(R) \cap \mathcal{B}_C(R)$.
- iii) ${}_R C$ is Σ -self-orthogonal and self-small (i.e. it satisfies:
 $\text{Hom}_R(M, M^{(I)}) \cong \text{Hom}_R(M, M)^{(I)}$ for every set I).

1 Preliminaries and Motivation

2 G_C -projective modules

3 P_C -projective dimension

P_C -projective dimension

Definition

A module M is said to have finite P_C -projective dimension, $P_C\text{-pd}(M) < \infty$, if there is an exact sequence

$0 \rightarrow A_n \rightarrow \cdots \rightarrow A_1 \rightarrow A_0 \rightarrow M \rightarrow 0$ with $A_i \in \text{Add}_R(C)$ for every $i \in \{0, \dots, n\}$.

$P_C\text{-pd}(M)$ is the least nonnegative integer n for which such a sequence exists, and if there is no such n then $P_C\text{-pd}(M) = \infty$.

- Takahashi and White, *Homological aspects of semidualizing modules*, Math. Scand. **106** (2010).

Definition

Let T be a class of modules. By a left T -resolution of a module M , we mean a $\text{Hom}(T, -)$ -exact complex $\cdots \rightarrow T_1 \rightarrow T_0 \rightarrow M \rightarrow 0$ (not necessarily exact) with each $T_i \in T$.

P_C -projective dimension

Definition

A module M is said to have finite P_C -projective dimension, $P_C\text{-pd}(M) < \infty$, if there is an exact sequence

$0 \rightarrow A_n \rightarrow \cdots \rightarrow A_1 \rightarrow A_0 \rightarrow M \rightarrow 0$ with $A_i \in \text{Add}_R(C)$ for every $i \in \{0, \dots, n\}$.

$P_C\text{-pd}(M)$ is the least nonnegative integer n for which such a sequence exists, and if there is no such n then $P_C\text{-pd}(M) = \infty$.

- Takahashi and White, *Homological aspects of semidualizing modules*, Math. Scand. **106** (2010).

Definition

Let T be a class of modules. By a left T -resolution of a module M , we mean a $\text{Hom}(T, -)$ -exact complex $\cdots \rightarrow T_1 \rightarrow T_0 \rightarrow M \rightarrow 0$ (not necessarily exact) with each $T_i \in T$.

P_C -projective dimension

Definition

A module M is said to have finite P_C -projective dimension, $P_C\text{-pd}(M) < \infty$, if there is an exact sequence

$0 \rightarrow A_n \rightarrow \cdots \rightarrow A_1 \rightarrow A_0 \rightarrow M \rightarrow 0$ with $A_i \in \text{Add}_R(C)$ for every $i \in \{0, \dots, n\}$.

$P_C\text{-pd}(M)$ is the least nonnegative integer n for which such a sequence exists, and if there is no such n then $P_C\text{-pd}(M) = \infty$.

- Takahashi and White, *Homological aspects of semidualizing modules*, Math. Scand. **106** (2010).

Definition

Let T be a class of modules. By a left T -resolution of a module M , we mean a $\text{Hom}(T, -)$ -exact complex $\cdots \rightarrow T_1 \rightarrow T_0 \rightarrow M \rightarrow 0$ (not necessarily exact) with each $T_i \in T$.

P_C -projective dimension

Definition

A module M is said to have finite P_C -projective dimension, $P_C\text{-pd}(M) < \infty$, if there is an exact sequence

$0 \rightarrow A_n \rightarrow \cdots \rightarrow A_1 \rightarrow A_0 \rightarrow M \rightarrow 0$ with $A_i \in \text{Add}_R(C)$ for every $i \in \{0, \dots, n\}$.

$P_C\text{-pd}(M)$ is the least nonnegative integer n for which such a sequence exists, and if there is no such n then $P_C\text{-pd}(M) = \infty$.

- Takahashi and White, *Homological aspects of semidualizing modules*, Math. Scand. **106** (2010).

Definition

Let T be a class of modules. By a left T -resolution of a module M , we mean a $\text{Hom}(T, -)$ -exact complex $\cdots \rightarrow T_1 \rightarrow T_0 \rightarrow M \rightarrow 0$ (not necessarily exact) with each $T_i \in T$.

P_C -projective dimension

Theorem

Let C be a \sum -self-orthogonal R -module. For an R -module M and an integer number $n \geq 0$ the following assertions are equivalent:

1. $P_C\text{-pd}(M) \leq n$.
2. There is an exact left $\text{Add}_R(C)$ -resolution of M of length n .
3. For every left $\text{Add}_R(C)$ -resolution

$$\cdots \rightarrow Y_1 \xrightarrow{f_1} Y_0 \xrightarrow{f_0} M \xrightarrow{f_{-1}} 0$$

of M , $\ker(f_{n-1}) \in \text{Add}_R(C)$ and the left $\text{Add}_R(C)$ -resolution
 $0 \rightarrow \ker(f_{n-1}) \rightarrow Y_{n-1} \rightarrow \cdots \rightarrow Y_1 \rightarrow Y_0 \rightarrow M \rightarrow 0$ is exact.

P_C -projective dimension

P_C -projective dimension

- A left R -module M is said to be Hom-faithful if:
 $\text{Hom}_R(M, N) = 0 \Rightarrow N = 0$.
- Let T be a class of R -modules. Then for an R -module M , a homomorphism $f : C \rightarrow M$ where $C \in T$ is called a T -precover of M if, for every $C' \in T$, $f^* : \text{Hom}(C', C) \rightarrow \text{Hom}(C', M)$ is surjective.

P_C -projective dimension

- A left R -module M is said to be Hom-faithful if:
 $\text{Hom}_R(M, N) = 0 \Rightarrow N = 0$.
- Let T be a class of R -modules. Then for an R -module M , a homomorphism $f : C \rightarrow M$ where $C \in T$ is called a T -precover of M if, for every $C' \in T$, $f^* : \text{Hom}(C', C) \rightarrow \text{Hom}(C', M)$ is surjective.

P_C -projective dimension

Theorem

Let C be a \sum -self-orthogonal R -module. The following assertions are equivalent:

- ① C is Hom-faithful.
- ② If $\phi : I \rightarrow M$ is an $\text{Add}_R(C)$ -precover with $K = \ker(\phi) \in \text{Add}_R(C)^\perp$, then ϕ is surjective and $M \in \text{Add}_R(C)^\perp$.
- ③ If $\cdots \rightarrow Y_1 \xrightarrow{f_1} Y_0 \xrightarrow{f_0} M \rightarrow 0$ is a left $\text{Add}_R(C)$ -resolution of M with $\ker(f_n) \in \text{Add}_R(C)^\perp$, then the sequence $0 \rightarrow \ker(f_n) \rightarrow \cdots \rightarrow Y_1 \rightarrow Y_0 \rightarrow M \rightarrow 0$ is exact.
- ④ Every monic $\text{Add}_R(C)$ -precover $\phi : I \rightarrow M$ of an R -module M is an isomorphism.
- ⑤ For every R -module M and every $n \in \mathbb{N}$, $P_C\text{-pd}(M) \leq n$ if and only if M admits a left $\text{Add}_R(C)$ -resolution of length n .

P_C -projective dimension

Theorem

Let C be a \sum -self-orthogonal R -module. The following assertions are equivalent:

- 1 C is Hom-faithful.
- 2 If $\phi : I \rightarrow M$ is an $\text{Add}_R(C)$ -precover with $K = \ker(\phi) \in \text{Add}_R(C)^\perp$, then ϕ is surjective and $M \in \text{Add}_R(C)^\perp$.
- 3 If $\cdots \rightarrow Y_1 \xrightarrow{f_1} Y_0 \xrightarrow{f_0} M \rightarrow 0$ is a left $\text{Add}_R(C)$ -resolution of M with $\ker(f_n) \in \text{Add}_R(C)^\perp$, then the sequence $0 \rightarrow \ker(f_n) \rightarrow \cdots \rightarrow Y_1 \rightarrow Y_0 \rightarrow M \rightarrow 0$ is exact.
- 4 Every monic $\text{Add}_R(C)$ -precover $\phi : I \rightarrow M$ of an R -module M is an isomorphism.
- 5 For every R -module M and every $n \in \mathbb{N}$, $P_C\text{-pd}(M) \leq n$ if and only if M admits a left $\text{Add}_R(C)$ -resolution of length n .

P_C -projective dimension

P_C -projective dimension

Theorem

Let C be a weakly Wakamatsu tilting R -module. For every R -module M , $G_C\text{-pd}(M) \leq P_C\text{-pd}(M)$, such that the equality $P_C\text{-pd}(M) = G_C\text{-pd}(M)$ holds true whenever M has a finite P_C -projective dimension.

P_C -projective dimension

Example (Example of a module M which has finite G_C -projective dimension but infinite P_C -projective dimension)

Consider any left noetherian ring R , and a Gorenstein injective left R -module M which is not injective. If

$$\cdots \rightarrow E_1 \rightarrow E_0 \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots$$

is the complete injective resolution associated to M , that is, $M = \ker(E^0 \rightarrow E^1)$, take $C = (\bigoplus_{i \geq 0} E^i) \oplus (\bigoplus_{i \geq 1} E^i(R))$ where $0 \rightarrow R \rightarrow E^1(R) \rightarrow E^2(R) \rightarrow \cdots$ is an injective resolution of R . Then C is weakly Wakamatsu tilting and M is G_C -projective. However $P_C\text{-pd}(M) = \infty$.

Thank you for your time