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G is an additive finite abelian group.

Consider F (G ), the monoid of finite sequences S = g1g2 . . . gn
over G , under the operation of sequence concatenation.

We have a special submonoid called the block monoid:

B(G ) = {S ∈ F (G ) | g1 + g2 + . . . + gn = 0}

which consists of all the zero-sum sequences over G .

The block monoid plays a key role in the factorization theory of
algebraic number rings (and Dedekind domains and Krull
monoids), since such rings D have a transfer homomorphism
D → B(C (D)), where C (D) is the divisor class group.

Paul Baginski Fairfield University

Plus Minus Davenport



We can factor zero-sum sequences in B(G ) as a product of
zero-sum subsequences.

S = S1S2 · · · Sk

The atoms of B(G ) are the minimal zero-sum sequences,
namely, zero-sum sequences S with no proper zero-sum
subsequence.

The Davenport constant D(G ) is the longest length of a minimal
zero-sum sequence over G .
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Equivalent definitions of the Davenport constant D(G ):

A zero-sum-free sequence is a sequence S ∈ F (G ) which has no
subsequence that is zero sum.

• D(G ) is the least n such that there are no zero-sum-free
sequences of length n.

• D(G ) is the least n such that for every S = g1 · · · gn ∈ F (G ),
there exist a1, . . . , an ∈ {0, 1} not all zero such that

n∑
i=1

aigi = 0
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The weighted Davenport constant DA(G ) with weight set
A ⊆ Z is the least n such that for every S = g1 · · · gn ∈ F (G ),
there exist a1, . . . , an ∈ A not all zero such that

n∑
i=1

aigi = 0

We can also say S ∈ F (G ) is weighted zero-sum-free (wzsf) if
whenever a1, . . . , an ∈ A satisfy

n∑
i=1

aigi = 0

then a1 = . . . = an = 0. Clearly, DA(G ) is the least n such that
there are no wzsf of length n.
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As long as 1 ∈ A (which we require), DA(G ) ≤ D{1}(G ) = D(G )

Study began only in 2006 by Adhikari and his coauthors.

S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin
and F. Pappalardi, Contributions to zero-sum problems,
Discrete Math. 306 (2006) 110.

S. D. Adhikari and P. Rath, Davenport constant with weights
and some related questions, Integers 6 (2006) A30, 6 pp.
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We care about A = {−1, 0, 1} and denote DA(G ) by D±(G ), the
plus-minus Davenport constant.

D±(G ) plays a role in:

creating dissociated sets, used in Fourier arguments and
integer lattices (see Tao, Vu Additive Combinatorics)

norms of principal ideals in quadratic algebraic number fields
(Halter-Koch)

factorization problems when you refine the definition of
“associates” (B., Chris Mooney)
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Theorem (Adhikari, Grynkiewicz, Sun 2012)

If G = Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnr for n1|n2| . . . |nr , then

1 +
r∑

i=1

blog2(ni )c ≤ D±(G ) ≤ 1 +

⌊
r∑

i=1

log2(ni )

⌋
= 1 + blog2(|G |)c

Marchan, Ordaz, and Schmid noted the hypothesis “or
n1|n2| . . . |nr” was superfluous and it’s advantageous sometimes to
use other expressions for G because you get tighter bounds.
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Remarks on the AGS bounds

1 +
r∑

i=1

blog2(ni )c ≤ D±(G ) ≤ 1 +

⌊
r∑

i=1

log2(ni )

⌋

These bounds differ by at most r . Very tight, especially when
compared to the best known bounds for D(G ), which do not
differ by a linear amount.
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Remarks on the AGS bounds

1 +
r∑

i=1

blog2(ni )c ≤ D±(G ) ≤ 1 +

⌊
r∑

i=1

log2(ni )

⌋

These bounds differ by at most r . Very tight, especially when
compared to the best known bounds for D(G ), which do not
differ by a linear amount.

Corollary: D±(Cn) = blog2(n)c+ 1

Corollary: For any 2-group G , D±(G ) = log2(|G |) + 1.

Corollary: For any 2-group G and any n ≥ 1,
D±(G ⊕ Cn) = log2(|G |) + blog2(n)c+ 1.
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Other values:

Theorem (Thangadurai 2007)

For all r ≥ 1, D±(C r
3 ) = r + 1.

Marchan, Ordaz and Schmid (2014) developed some general
lemmas to try to attack C 2

n , Cn + Cm, Cn + Cm + Cq, and C r
p , but

no general formula.
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Other values:

Theorem (Thangadurai 2007)

For all r ≥ 1, D±(C r
3 ) = r + 1.

Marchan, Ordaz and Schmid (2014) developed some general
lemmas to try to attack C 2

n , Cn + Cm, Cn + Cm + Cq, and C r
p , but

no general formula.

Determined D±(G ) for all groups of order ≤ 100 except
G = C5 + C15. In each case, D±(G ) equalled the upper or lower
bound of AGS (usually the upper).

Question: Are there finite abelian groups with

1 +
r∑

i=1

blog2(ni )c < D±(G ) < 1 +

⌊
r∑

i=1

log2(ni )

⌋
(using the best most favorable representation of G ) ?
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We studied C r
3 + C2.
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We studied C r
3 + C2.

Known values:
D±(C3 + C2) = D±(C6) = 3 = lb = ub
D±(C 2

3 + C2) = 5 = ub
D±(C 3

3 + C2) = 6 = ub

First unknown: D±(C 4
3 + C2).

Paul Baginski Fairfield University

Plus Minus Davenport



We studied C r
3 + C2.

Known values:
D±(C3 + C2) = D±(C6) = 3 = lb = ub
D±(C 2

3 + C2) = 5 = ub
D±(C 3

3 + C2) = 6 = ub

First unknown: D±(C 4
3 + C2).

Thm D±(C 4
3 + C2) = 7 and D±(C 5

3 + C2) = 8

lb = 6 < D±(C 4
3 + C2) < ub = 8

lb = 7 < D±(C 5
3 + C2) < ub = 9

MOS question has POSITIVE answer (as expected).
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Lemma

For all r ≥ 2, D±(C r
3 + C2) ≥ r + 3.

Proof: Construct a wzsf sequence of length r + 2.
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Lemma

For all r ≥ 2, D±(C r
3 + C2) ≥ r + 3.

Proof: Construct a wzsf sequence of length r + 2. For r even, take

s1 = (1, 0, 0, 0, . . . , 0, 0, 1)
s2 = (0, 1, 0, 0, . . . , 0, 0, 1)
s3 = (0, 0, 1, 0, . . . , 0, 0, 1)

...
...

sr = (0, 0, 0, 0, . . . , 0, 1, 1)
sr+1 = (1, 1, 1, 1, . . . , 1, 1, 1)
sr+2 = (1, 2, 0, 0, . . . , 0, 0, 1)
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Lemma

For all r ≥ 2, D±(C r
3 + C2) ≥ r + 3.

Proof: Construct a wzsf sequence of length r + 2. For r odd, take

s1 = (1, 0, 0, 0, . . . , 0, 0, 1)
s2 = (0, 1, 0, 0, . . . , 0, 0, 1)
s3 = (0, 0, 1, 0, . . . , 0, 0, 1)

...
...

sr = (0, 0, 0, 0, . . . , 0, 1, 1)
sr+1 = (1, 1, 1, 1, . . . , 1, 1, 0)
sr+2 = (1, 2, 0, 0, . . . , 0, 0, 1)
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Conjecture for the entire summer was: For all r ≥ 2,
D±(C r

3 + C2) = r + 3.
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Conjecture for the entire summer was: For all r ≥ 2,
D±(C r

3 + C2) = r + 3.

Conjecture is false!

Theorem

For 2 ≤ r ≤ 9, D±(C r
3 + C2) = r + 3.

BUT, D±(C 10
3 + C2) = 14 = r + 4

This is a group of order 118,098. No hope for brute force search.
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The wzfs of length 13 that we found in C 10
3 + C2 is

s1 = ( 1 0 0 0 0 0 0 0 0 0 1 )
s2 = ( 0 1 0 0 0 0 0 0 0 0 1 )
s3 = ( 0 0 1 0 0 0 0 0 0 0 1 )
s4 = ( 0 0 0 1 0 0 0 0 0 0 1 )
s5 = ( 0 0 0 0 1 0 0 0 0 0 1 )
s6 = ( 0 0 0 0 0 1 0 0 0 0 1 )
s7 = ( 0 0 0 0 0 0 1 0 0 0 1 )
s8 = ( 0 0 0 0 0 0 0 1 0 0 1 )
s9 = ( 0 0 0 0 0 0 0 0 1 0 1 )
s10 = ( 0 0 0 0 0 0 0 0 0 1 1 )
s11 = ( 1 1 1 2 1 1 0 1 2 0 1 )
s12 = ( 1 1 2 1 1 0 1 2 0 1 1 )
s13 = ( 1 2 1 1 0 1 1 0 1 2 1 )
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D±(C 1
3 + C2) = 3 = r + 2

D±(C 2
3 + C2) = 5 = r + 3

D±(C 3
3 + C2) = 6 = r + 3

D±(C 4
3 + C2) = 7 = r + 3

D±(C 5
3 + C2) = 8 = r + 3

D±(C 6
3 + C2) = 9 = r + 3

D±(C 7
3 + C2) = 10 = r + 3

D±(C 8
3 + C2) = 11 = r + 3

D±(C 9
3 + C2) = 12 = r + 3

D±(C 10
3 + C2) = 14 = r + 4

We can also now prove

D±(C r
3 + C2) + 1 ≤ D±(C r+1

3 + C2) ≤ D±(C r
3 + C2) + 2

so jumps of 2 are the worst. When do they happen?
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We think the actual formula is given by: if

3k − 1

2
− k ≤ r <

3k+1 − 1

2
− (k + 1)

then D±(C r
3 + C2) = r + k + 1.
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Higher exponents? D±(C r
3 + C s

2 )?

Proposition

D±(G + H) ≥ D±(G ) + D±(H)− 1

Sample use:

Proposition

D±(C 2r
3 + C r+s

2 ) ≥ 4r + s + 1

Good enough to get the precise value of small groups:

Corollary

D±(C 2r
3 + C r+s

2 ) = 4r + s + 1 for all 1 ≤ r ≤ 5 and all s ≥ 0.
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