

On the dot product graph of a commutative ring

Ayman Badawi
American University of Sharjah, Sharjah, UAE

September 25, 2014

Definition

Let R be a commutative ring with nonzero identity, and let $Z(R)$ be its set of zero-divisors. Recently, there has been considerable attention in the literature to associating graphs with algebraic structures. Probably the most attention has been to the zero-divisor graph $\Gamma(R)$ for a commutative ring R in the sense of Beck-Anderson-Livingston. The set of vertices of $\Gamma(R)$ is $Z(R)^* = Z(R) \setminus \{0\}$, and two distinct vertices x and y are adjacent if and only if $xy = 0$.

Definition

Let A be a commutative ring with nonzero identity, $1 \leq n < \infty$ be an integer, and let $R = A \times A \times \cdots \times A$ (n times). Let

$x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in R$. Then the dot product

$x \cdot y = x_1y_1 + x_2y_2 + \cdots + x_ny_n \in A$. In this talk, we introduce the total dot product graph of R to be the (undirected) graph $TD(R)$ with vertices $R^* = R \setminus \{(0, 0, \dots, 0)\}$, and two distinct vertices x and y are adjacent if and only if $x \cdot y = 0 \in A$. Let $Z(R)$ denote the set of all zero-divisors of R . Then the zero-divisor dot product graph of R is the induced subgraph $ZD(R)$ of $TD(R)$ with vertices $Z(R)^* = Z(R) \setminus \{(0, 0, \dots, 0)\}$. It follows that each edge (path) of the classical zero-divisor graph $\Gamma(R)$ is an edge (path) of $ZD(R)$. We observe that if $n = 1$, then $TD(R)$ is a disconnected graph, where $ZD(R)$ is identical to $\Gamma(R)$ in the sense of Beck-Anderson-Livingston, and hence it is connected.

Definition

We recall some definitions. Let Γ be a (undirected) graph. We say that Γ is connected if there is a walk (path) between any two distinct vertices. For vertices x and y of Γ , we define $d(x, y)$ to be the length of a shortest path from x to y ($d(x, x) = 0$ and $d(x, y) = \infty$ if there is no path). Then the diameter of Γ is $\text{diam}(\Gamma) = \sup\{ d(x, y) \mid x \text{ and } y \text{ are vertices of } \Gamma \}$. The girth of Γ , denoted by $gr(\Gamma)$, is the length of a shortest cycle in Γ ($gr(\Gamma) = \infty$ if Γ contains no cycles). A graph Γ is complete if any two distinct vertices are adjacent.

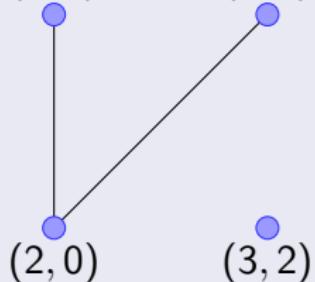
Theorem

Let A be an integral domain and $R = A \times A$. Then $TD(R)$ is disconnected and $ZD(R) = \Gamma(R)$ is connected. In particular, if A is ring-isomorphic to \mathbb{Z}_2 , then $ZD(R)$ is complete (i.e., $\text{diam}(ZD(R)) = 1$) and $\text{gr}(ZD(R)) = \infty$. If A is not ring-isomorphic to \mathbb{Z}_2 , then $\text{diam}(ZD(R)) = 2$ and $\text{gr}(ZD(R)) = 4$.

Example

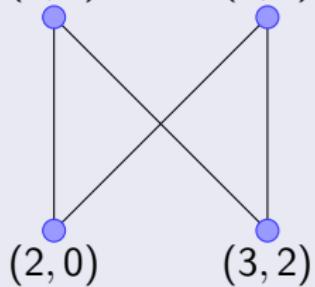
Let $A = \mathbb{Z}_4$, $R = A \times A = \mathbb{Z}_4 \times \mathbb{Z}_4$. Part of the $\Gamma(R)$

$(2, 1)$ $(2, 3)$



Let $A = \mathbb{Z}_4$, $R = A \times A = \mathbb{Z}_4 \times \mathbb{Z}_4$. Part of the $ZD(R)$

$(2, 1)$ $(2, 3)$



Theorem

Let $2 \leq n < \infty$, A be a commutative ring with $1 \neq 0$, and $R = A \times A \times \cdots \times A$ (n times). Then $ZD(R) = \Gamma(R)$ if and only if either $n = 2$ and A is an integral domain or R is ring-isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Theorem

Let A be a commutative ring with $1 \neq 0$ that is not an integral domain, and let $R = A \times A$. Then the following statements hold.

- ① $TD(R)$ is connected and $\text{diam}(TD(R)) = 3$.
- ② $ZD(R)$ is connected, $ZD(R) \neq \Gamma(R)$, and $\text{diam}(ZD(R)) = 3$.
- ③ $gr(ZD(R)) = gr(TD(R)) = 3$.

Theorem

Let A be a commutative ring with $1 \neq 0$, $3 \leq n < \infty$, and let $R = A \times A \times \cdots \times A$ (n times). Then $TD(R)$ is connected and $\text{diam}(TD(R)) = 2$.

Theorem

Let A be a commutative ring with $1 \neq 0$. Then the following statements hold.

- 1 If A is an integral domain and $R = A \times A \times A$, then $ZD(R)$ is connected ($ZD(R) \neq \Gamma(R)$) and $\text{diam}(ZD(R)) = 3$.
- 2 If A is not an integral domain and $R = A \times A \times A$, then $ZD(R)$ is connected ($ZD(R) \neq \Gamma(R)$) and $\text{diam}(ZD(R)) = 2$.
- 3 If $4 \leq n < \infty$ and $R = A \times A \times \cdots \times A$ (n times), then $ZD(R)$ is connected ($ZD(R) \neq \Gamma(R)$) and $\text{diam}(ZD(R)) = 2$.

Theorem

Let A be a commutative ring with $1 \neq 0$, $3 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then $gr(ZD(R)) = gr(TD(R)) = 3$.

Corollary

Let A be a commutative ring with $1 \neq 0$, $2 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then the following statements are equivalent.

- ① $gr(ZD(R)) = 3$.
- ② $gr(TD(R)) = 3$.
- ③ A is not an integral domain and $n = 2$ or $n \geq 3$.

Corollary

Let A be a commutative ring with $1 \neq 0$, $2 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then the following statements are equivalent.

- ① $gr(ZD(R)) = \infty$.
- ② A is ring-isomorphic to \mathbb{Z}_2 and $n = 2$.
- ③ $diam(ZD(R)) = 1$.

Corollary

Let A be a commutative ring with $1 \neq 0$ such that A is not ring-isomorphic to \mathbb{Z}_2 , $0 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then the following statements are equivalent.

- ① $gr(ZD(R)) = 4$.
- ② $ZD(R) = \Gamma(R)$.
- ③ $TD(R)$ is disconnected.
- ④ $n = 2$ and A is an integral domain.

Corollary

Let A be a commutative ring with $1 \neq 0$, $2 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then the following statements are equivalent.

- ① $diam(ZD(R)) = 3$.
- ② Either A is not an integral domain and $n = 2$ or A is an integral domain and $n = 3$.

Corollary

Let A be a commutative ring with $1 \neq 0$, $2 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then the following statements are equivalent:

- ① $\text{diam}(ZD(R)) = 2$.
- ② Either A is an integral domain that is not ring-isomorphic to \mathbb{Z}_2 and $n = 2$, A is not an integral domain and $n = 3$, or $n \geq 4$.

Corollary

Let A be a commutative ring with $1 \neq 0$, $2 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then $\text{diam}(TD(R)) = 3$ if and only if A is not an integral domain and $n = 2$.

Corollary

Let A be a commutative ring with $1 \neq 0$, $2 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then the following statements are equivalent.

- ① $\text{diam}(TD(R)) = 2$.
- ② $TD(R)$ is connected and $n \geq 3$.
- ③ $n \geq 3$.

Corollary

Let A be a commutative ring with $1 \neq 0$, $2 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then $\text{diam}(TD(R)) = \text{diam}(ZD(R)) = 3$ if and only if A is not an integral domain and $n = 2$.

- Badawi, A., On the dot product graph of a commutative ring, to appear in *Comm. Algebra* (2015).
- Badawi, A., On the annihilator graph of a commutative ring, *Comm. Algebra*, Vol.(42)(1), 108-121 (2014), DOI: 10.1080/00927872.2012.707262
- Anderson, D. F., Badawi, A., On the zero-divisor graph of a ring, *Comm. Algebra* (36)(2008), 3073-3092.
- Beck, I., Coloring of commutative rings, *J. Algebra* **116**(1988), 208–226.
- Anderson, D. F., Livingston, P. S., The zero-divisor graph of a commutative ring, *J. Algebra* **217**(1999), 434–447.
- Anderson, D. F., Mulay, S. B., On the diameter and girth of a zero-divisor graph, *J. Pure Appl. Algebra* **210**(2007), 543–550.
- Lucas, T. G., The diameter of a zero-divisor graph, *J. Algebra* **301**(2006), 3533–3558.

Free DOWNLOAD for related papers (and soon this paper):
<http://ayman-badawi.com/Publication.html>