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Sums and Products

Let A be a set. The sumset and the product set are defined as
follows.

A + A = {a1 + a2,a1,2 ∈ A}
A.A = {a1a2,a1,2 ∈ A}.

Conjecture (P. Erdős and E. Szemerédi)

max(|A.A|, |A + A|) ≥ cε|A|2−ε,

General idea
A set cannot be multiplicatively and additively structured at the
same time
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Our setting

Multiplicative structure = A is a product set (i.e. = B.B)

Additive structure = A contains a very long AP

Question
Let B be a set of integers. Assume that B.B contains an AP of
size M. How small can the set B be ? Can B be, say, of size
|M|0.99 ?



Main result

Theorem (Z. 2015)
Let B be an integer set. If B.B contains an AP of size M then

|B| ≥ π(M) + c
M2/3

log2 M
,

where π is the prime counting function and c > 0 is a constant.
Moreover, there are examples with

|B| ≤ π(M) + M2/3.

Remark. Rumors [PPP] are that there are examples with

|B| ≤ π(M) + c′
M2/3

log2 M
.
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Toy example

I Let {1, . . . ,M} ⊂ B.B and N = π(M).
I Clearly

2 = p1,p2, . . . ,pN ∈ B.B

I Define a ’reduced‘ p-adic valuation ρ : [1,M]→ FN
3 as

ρ(x)i = ordpi (x) mod 3.

I In particular,

ρ(p1) = (1,0, . . . ,0);
ρ(p2) = (0,1, . . . ,0);

...
ρ(pN) = (0,0, . . . ,1);
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Toy example

We have {1, . . . ,M} ⊂ B.B and thus

ρ({1, . . . ,M}) ⊆ ρ(B) + ρ(B).

In particular,

Span(ρ({1, . . . ,M})) ⊆ Span(ρ(B)).

But ρ(p1), . . . , ρ(pN) is a basis in FN
3 and thus

π(M) = N ≤ |ρ(B)| ≤ |B|.
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We can do better by considering elements in [1,M] with a few
prime factors.

Discrete spheres

Let Sl
k be the set of all {0,1} vectors in Fl

3 with exactly k
non-zero coordinates. We will call Sl

k a discrete sphere of
dimension l and weight k .

For example,
{ρ(p1), . . . , ρ(pN)} = SN

1 ,

and
ρ({pipjpk , i 6= j 6= k}) = SN

3 .
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Now, define

P1 = {p}, M1/3 < p ≤ M,

P2 = { pipjpk }, pi,j,k ≤ M1/3, i 6= j 6= k

so that
P1,P2 ⊆ {1, . . . ,M} ⊆ B.B.

Moreover,

ρ(P1 ∪ P2) = S|P1|
1 ⊕ Sπ(M1/3)

3 ⊆ ρ(B) + ρ(B).
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It is ‘conceivable’ to assume that

B = B1
⊔

B2

such that

S|P1|
1 ⊆ ρ(B1) + ρ(B1).

Sπ(M1/3)
3 ⊆ ρ(B2) + ρ(B2)

Then (recall N = π(M))

|B| = |B1|+ |B2| ≥ |P1|+ |B2| = π(M)− π(M1/3) + |B2|.

Our aim is to prove that

|B2| � π(M1/3)2 � M2/3

log2 M
.
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Lemma (Main Lemma)
Assume that Sn

3 ⊆ B + B. Then

|B| � n2.

Trivial bound:
|B| � |Sn

3 |1/2 � n3/2.

Obviously, the bound is tight: one can take

B = Sn
1 ∪ Sn

2 .
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Let B1,B2 be two disjoint copies of B.
I Build a bipartite graph H on (B1,B2) with (b1,b2) adjacent

iff b1 + b2 ∈ S3

I Start with the identity∑
(v1,v2)∈B1×B1

|N(v1) ∩ N(v2)| =
∑

w∈B2

d2(w). (1)

I If one could prove that (1) is at most n4 then by C-S

|B|n4 ≥ |B2|
∑

w∈B2

d2(w) ≥

 ∑
w∈B2

dH(w)

2

= E(H)2 � n6.

Therefore, |B| � n2.
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But unfortunately, the sum on the previous slide can be as large
as n5 :’(
Indeed, take

B = Sn
1 ∪ Sn

2 .

Remedy: carefully excise some edges from the graph H such
that for the resulting graph H ′ holds

I

E(H ′)� n3

I ∑
(v1,v2)∈B1×B1

|NH′(v1) ∩ NH′(v2)| � n4.
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Crucial observation: ‘irreducibility’ of the 2-sphere

Assume that there existed a decomposition of a two-sphere

Sn
2 = B1 + B2

with
|B1| ≈ n0.9 |B2| ≈ n1.1.

Then we could have taken

B′1 = B1 + Sn
1

B′2 = B2

B = B′1 ∪ B′2.

Clearly, |B| ≤ n1.9 but

Sn
3 ⊆ Sn

2 + Sn
1 ⊆ (B1 + B2) + Sn

1 ⊆ B + B.
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